Participants

State of Washington:
Department of General Administration
Engineering and Architecture Services
 Robert Colasurdo, GA Project Manager

Cascadia Community College:
Core Group
 William Christopher, President
 Terence Hsiao, Vice President for Finance and Operations
 Jean Hernandez, Executive Vice President for Student Learning
 Gail Miulli, Interim Vice President for Student Services
 David Ortiz, Founding Faculty
 Dee Sliney, Director of Auxiliary Services and Capital Projects

University of Washington, Bothell Committee:
 Tom Bellamy, Vice Chancellor for Academic Affairs
 Marilyn Cox, Assistant Vice Provost for Capital Planning, UW Planning and Budgeting
 David Bush, Assistant Director of Student Affairs
 Jane Decker, Associate Dean for Academic Planning
 Cynthia Fugate, Director of Library and Academic Services
 Shawn Hunstock, Manager, Finance & Administration
 Kevin Laverty, Associate Professor, Business Program
 Jane Van Galen, General Faculty Organization Representative; Professor, Education Program
 Kam Yee, UWB Undergraduate Student, IAS

Committee Support:
 Kellie Holden, Administrative Services

Joint Committee Members:
 Tony Guerrero, Director of Facilities
 Brian Fletcher, Manager, Campus Media Center

Consultant Team:
Architects
The Miller|Hull Partnership
 Norman Strong, Partner-in-Charge
 David Miller, Partner-in-Charge of Design
 Margaret Sprug, Project Manager
 Caroline Kreiser, Project Architect

Landscape Architecture
 Gustafson Guthrie Nichol
 Shannon Nichol, Partner-in-Charge

Civil Engineer
 OTAK
 Nico Vanderhorst, Principal
Table of Contents

1. INTRODUCTION
 1.1 Foundation p. 4
 1.2 Purpose p. 5
 1.3 Goals p. 5

2. DESIGN OVERVIEW
 2.1 An Overview of Campus Form p. 6
 2.2 History p. 7
 2.3 Site Character p. 7
 2.4 Identity p. 7
 2.5 Neighbors & Connections p. 7

3. MASTER PLAN CONCEPT
 3.1 Concept p. 8
 3.2 Views, Axes and Nodes p. 9
 3.3 Site Sections p. 10
 3.4 Sustainability p. 12
 3.5 Phasing p. 14

4. CIRCULATION
 4.1 Vehicular Circulation p. 22
 4.2 Service and Emergency Access p. 22
 4.3 Pedestrian Accessibility and Bicycle Circulation p. 23
 4.4 Open Spaces p. 24

5. LANDSCAPE
 5.1 Campus Landscape Evaluation p. 25
 5.2 Design Ideas p. 25
 5.3 Preservation Strategies p. 26
 5.4 Years of Change p. 26

6. CONCLUSION
 6.0 Concluding Comments p. 27

APPENDICES
 Sun Studies
 Recommended Growth Study
 References
1. Introduction

1.1 Foundation

The University of Washington, Bothell (UWB) and Cascadia Community College (CCC) co-located campus has operated under the original master plan that has been in place since September 1995. Since that time, this campus has completed Phase 1 and Phase 2a of that plan.

The growth of the campus through Phase 2a has been limited to 3000 full-time-equivalent (FTE) students until completion of the new South Access from SR-522. Cascadia Community College has received design funding for a new Academic Building that will increase enrollment beyond that cap.

In the spring of 2004, CCC embarked on a master planning effort in conjunction with the design of their new building. Concurrently UWB completed a self study pursuant to Substitute House Bill #2707 and submitted this to the State Legislature. Joint planning began and this document represents a common approach for development for both UWB and CCC. The plan envisions the total campus build-out to accommodate 10,000 student FTEs.

The 2006 Campus Facilities Master Plan provides an overall guide to the physical development of the co-located campus for University of Washington, Bothell and Cascadia Community College. It is a refinement of two previous master plan studies: the original, completed in 1995 and an update in 2003 by the Seattle design firm nbbj. The 2006 Facilities Master Plan is consistent with the goals, vision and principles presented in those documents, and endows the campus planners with three basic planning principles to guide future development:

- to celebrate and respect the site’s natural features
- to maintain a simple, easily understood campus plan
- to achieve a sense of completeness through the subsequent phases of development to site build-out
1.2 Purpose

This 2006 Facilities Master Plan update is consistent with these principles and extends the planning to full site capacity. The main objective is to establish the size and placement of the future buildings, parking, infrastructure and circulation needs. This plan is not intended to identify the specific programs to be housed in the future buildings. The following opportunities and challenges were identified in meetings with representatives from both institutions:

- Expression of the Identity of each institution
- Recommendation of a Phasing Plan
- Incorporation of Sustainable Strategies
- Connection with the Community
- Universal Accessibility
- Addition of a joint Student Recreation space

Meetings with both institutions added further detail and additional considerations. These were incorporated to arrive at a master plan reflective of current objectives for the campus in the next 20 years.

1.3 Goal

The update of the master plan provides a clear path to achieve the anticipated growth based on the principles set forth above. It is intended as a guide for development and as protection for the remarkable natural features of the site.

1.4 Important Features of the 2003 Long Range Physical Plan

Topography: The 2003 Long Range Physical Plan recognized the importance and uniqueness of the striking topography and natural features of this site. The plan was carefully developed to work with the slope of the site and maintain as much of the native forest and natural features as possible. Buildings, vehicular and pedestrian paths are planned to follow the site contours in a linear fashion.

Circulation: The main pedestrian promenade links the north and south extremes of the campus. A main automobile loop road keeps the campus center dedicated to pedestrians.

Parking: The majority of the parking required for the campus is located outside the automobile loop in parking structures. Since 80% of the vehicular traffic coming to campus will be from the new South Access, parking is concentrated at the south entrance of campus.
2. Design Overview

2.1 An Overview of Campus Form

The illustrative site plan represents a fully realized built-out campus which will be the product of phased development occurring over many years according to the guidelines in the master plan documents. The pace of the development will be determined by budget, actual growth and the needs of each institution. The elements of the master planning scope for this committee’s focus include:

- Evaluate and recommend an ideal campus “feel” for the entire campus community, visitor welcoming, and way-finding
- Traffic and pedestrian circulation
- Open spaces, exterior community spaces
- Preferred site locations for new construction, possibly including:
 - maintaining current tree line as viewed from the east
 - potential sites east of Lower Campus Way
- Recommendations for the optimal height and square footage for new construction given available space in which to construct
- Evaluation of the potential to accommodate 10,000 student FTEs on this site with the accompanying infrastructure including:
 - Parking requirements and recommendation for the split between structured and surface parking
 - Recommendation to strategically locate selected student services, both dedicated and shared, such as recruitment, advising, career services, admission, etc.
 - Student Recreation building, including child care facilities and sports facilities
 - Full food services space
 - Expansion of the Physical Plant, power requirements, and security
 - Greenhouse decommission
 - Evaluation of eventual use for the Boone- Truly Ranch House
 - Evaluation of North Creek Café for current or alternate use
- Evaluate and recommend sustainable building and landscaping strategies, including recycling/re-use options
2.2 History

The site area is within the former territory of the Sammamish Indian band, which is considered to be part of the Duwamish group. Descendants may have been affiliated with the Suquamish, Duwamish, Tulalip, Snoqualmie, and Muckleshoot tribes. Later settlement occurred with the claims patented in 1872-1873 by George Rutter Wilson and William Bramwell Bishop, which included the Boone- Truly Farms and Stringtown areas. Logging, agriculture, and dairy farming were predominant activities. The Stringtown houses were constructed beginning in the late 1800s.

Most of the Boone- Truly Ranch property has been actively and continuously farmed by a series of owners including: George R. Wilson, who homesteaded the land in 1870, Benjamin and Lily Boone, who purchased it around 1924, and Richard Truly and the late Beverly Boone- Truly, who acquired the site in 1962.

In 1993 the Higher Education Coordinating Board identified the site as the future location of the co-located campus of the University of Washington, Bothell and Cascadia Community College. Between 1998 and 2003 the first college buildings were built and in the fall of 2000 the first students began taking classes at the current site.

2.3 Site Character

The building site is a forested hillside sloping down to the east. The trees are a mix of mature western red cedar, Douglas fir, big-leaf maples, alders, hemlock, and fir. The subsurface is made up of glacial till, with water draining just a few feet below the surface toward the wetlands. The campus stretches over 128 acres, of which 58 acres are dedicated to wetland mitigation and restoration.

2.4 Identity

The co-located campus brings together the students of the University of Washington, Bothell and the students of Cascadia Community College. Together the institutions share resources such as libraries, laboratories, food services, and parking. The exchange of ideas also flourishes in meeting spaces and at shared events.

It is important to each institution to enjoy this synergy and to preserve their respective identities at the same time. Currently CCC occupies the northern side of the campus and UWB stretches to the south. The library, media center and bookstore, and informal park and amphitheater tie the two institutions together at the current center of campus.

2.5 Neighbors & Connections

The northern entry to the campus is flanked by a residential neighborhood and open fields. These fields may be developed commercially in the future. On the western edge of the campus an historic cemetery sits in a quiet residential area. To the south SR 522 creates a busy boundary. Beyond this road, North Creek joins the Sammamish River which drains into Lake Washington. A link to the trails following both of these waterways offers great opportunities to connect to the area. To the east the reclaimed wetlands of North Creek stretch until they meet Interstate 405. The Cascade mountains can be seen in the distance.
3. Master Plan Concept

3.1 Concept: the Hilltown Idea

The sweeping horizontal plain creates the foreground to the vertical grain of the evergreen forest of the hillside. This landscape inspires organizations typical of historical hilltowns of Europe. This plan responds to the natural topography, organizing building and circulation parallel to the slope. The campus becomes a village integrated into the forest.

The objective is to create a distinct character with signature circulation elements. To this effect the plan builds on an existing major pedestrian promenade to create a “Z” path which negotiates the grade change as it links the two institutions with the central campus. A smaller scale path will wind between buildings and tall trees. These intimate paths will open up into the larger, civic-scale gathering spaces of the plazas. Refer to p. 22 for further details on the circulation goals.

“A university should not be a building but a village.” Thomas Jefferson

Concept Sketch- view from wetlands
3.2 Views, Axes, and Nodes

The features of this campus were studied to make the most of the views and the differing landscape characteristics found on the site. The plan retains the major views to the wetlands and the forest already established by the breaks in the massing of the existing buildings. Plazas are developed strategically to reinforce these views. Furthermore, long streetscape views are developed along the promenade while views across the grain highlight the campus’ natural features of the campus and preserve the forest feel.

The axes created by the “Z” pedestrian spine create a clear diagram for navigating the campus. The “Z” can be entered from either the UWB or CCC side of campus and this spine links the major plazas as well as providing for connectors up and down the slopes. At the center of the campus, the ‘shared heart’ brings students of both institutions together at an outdoor amphitheater framed by the library and the Student Services Building.
3.3 Site Sections

The character of the buildable part of the site is sloped and wooded. The slope ranges from 5%-28%, which creates some unique opportunities and constraints. Universal accessibility is a challenge while the terraced nature of building on the site creates many opportunities for views across the site.

The east-west section cuts through some of the most steeply sloped areas of the site and shows the opportunities for preserving views at the upper floors of buildings at full build-out.
3.3 Site Sections (continued)

The longitudinal north-south sections on this page are viewed from the new pedestrian spine and show the gradual slope across the site as they link the campus open spaces.
3.4 Sustainability

Sustainable design is fundamentally good design. UWB and CCC have identified the goal to pursue design and construction of future development to the standards of LEED™ Silver (Leadership in Energy & Environmental Design), as established by the U.S. Green Building Council, and as required by the State of Washington. Designing to the criteria of LEED™ Silver may result in a premium of 3 to 5% on construction costs, though this premium investment should result in a building with lower operating costs and a healthy indoor environment.

Following are some strategies that should be considered for future development.

3.4.1 Stormwater

Providing project specific solutions for stormwater management will be important in the early stages of each planned development project. Below is a list of sustainable site strategies:

- Minimize the footprint of the proposed buildings and limit areas disturbed during construction.
- Utilize pervious surfacing such as Grasspave™, pervious pavement, and porous concrete. This strategy should be considered for surface parking lots in particular.
- Collect and store rainwater for reuse as landscape irrigation.
- Evaluate use of campus water rights to North Creek as an alternative to using potable water.
- Develop rain gardens to treat and detain stormwater and integrate into the landscape design.
- Utilize green roofs to reduce the amount of impervious surfaces.
- Utilize extensive landscape areas to reduce heat islands.

As building progresses, the use of storm water for landscaping or the use of gray water in the buildings will be studied on a case by case basis to determine the viability and cost to implement those systems.

3.4.2 Alternative Transportation

Provide incentives to reduce parking demand on campus:

- Deliver programming to encourage public transportation and carpooling for faculty, staff, and students.
- Accommodate bicycling staff and students by providing ample bike parking/storage, and increase the number and locations of facilities to shower/change.
- Provide drop-off areas.

3.4.3 Quality of the Indoor Environment

Indoor air quality plays an important role in occupant productivity, absentee rates and illnesses. Improved occupant health can result in lower health and insurance costs.

- Continue to consider ways to demonstrate the sustainable features achieved in campus structures.
- Use high efficiency air filtration.
- Continue to minimize use of materials which produce VOC (Volatile organic compounds) indoors.
- In air conditioned buildings, use ASHRAE Standard 129-1997 to ensure air change effectiveness (adequate outside air in occupied zone).
- Use heat recovery technology that allows for higher outside air rates while minimizing increased energy consumption.
3.4.4 Building Materials
- Target selection of building materials in accordance with current LEED™ guidelines.
- Target use of recycled content, locally manufactured, and sustainably harvested materials.
- Provide brick facades and sloped metal roofs for longevity and unity throughout campus.
- Use high albedo materials such as concrete in lieu of asphalt to reduce heat islands.

3.4.5 Recycling
- Continue to provide a campus recycling location with satellite collection areas at each campus building. At a minimum, include recycling of paper, glass, and aluminum.
- Continue to divert waste material from landfills and reuse organic material on-site in landscape areas.
- Continue to specify the recycling of a minimum of 50% of construction waste at each future project.

3.4.6 Solar Considerations
- Utilize favorable solar orientation - face the buildings toward the sun for maximum daylight.
- Protect glazed openings from excessive solar gain.
- Create indoor and outdoor people-spaces with favorable solar orientation. Continue to provide daylight and views to all regularly occupied indoor spaces.
- Consider the use of photovoltaic panels on the parking structures and on metal roofs to supplement electrical power demands.

3.4.7 Reduce Water Use
- Continue to use low-flow fixtures, and waterless urinals to reduce overall potable water consumption significantly.
- Investigate pros and cons in collection and storage of gray water for toilet/urinal flushing and landscape irrigation.
- Plant native and/or drought tolerant species to minimize irrigation needs.

3.4.8 Reduce Energy Use
The first step in designing a sustainable mechanical system is to reduce the cooling and heating loads in the building. This can be achieved by using thermally efficient windows, highly insulated walls and roofing, natural daylighting, efficient fluorescent lighting with dimmable electronic ballasts, laptop computers, energy star appliances, etc. Reducing the energy loads in this way will allow for reductions in mechanical equipment sizes.
- Continue the use of energy efficient equipment throughout building (computers, appliances et cetera)
- Continue to optimize building envelope thermal characteristics.
- Continue to consider natural ventilation strategies where appropriate.
- Consider maximizing day-lighting through light shelves and glare control.
- Continue the use of highly efficient, innovative mechanical systems and components.
- Continue the use of high efficiency and optimized lighting systems, fixture layout and type, occupancy and daylighting controls.
3.5 Phasing

3.5.1 Existing Conditions

The campus currently mediates between the upland forest and the wetland below, creating a transition between the distinct character of the natural landscape. UWB structures are predominantly located to the south, while CCC structures are located to the north. Parking structures anchor each end while the Library is the central focus of the campus.

See page 15 for Area Calculations and Summary for the current campus.

3.5.2 Future Phases

The phasing outlined below includes general recommendations for growth of the campus to full build-out. Each phase is guided by the following principles:
- Always maintain a "complete" campus feel for each stage of construction.
- Integrate infrastructure and student services as they can be supported by enrollment.
- Maintain vehicular/pedestrian circulation.

The specific order and year of each phase will be determined by budget, growth, and the needs analysis of each institution. Similarly, the parking demands and capacity will be monitored on a yearly basis. Prior to Phase 4 the parking requirements will be reviewed with the City of Bothell.
Summary of Current Conditions:

GSF = Gross square footage
ASF = Assignable square footage
prepared May 2006

<table>
<thead>
<tr>
<th>Existing Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bldg. No.</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>UWB 1</td>
</tr>
<tr>
<td>UWB 2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Subtotal for UWB</td>
</tr>
<tr>
<td>CCC 1</td>
</tr>
<tr>
<td>CCC 2</td>
</tr>
<tr>
<td>Subtotal for CCC</td>
</tr>
<tr>
<td>LB1/LBA</td>
</tr>
<tr>
<td>LB2/NCC</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>PP</td>
</tr>
<tr>
<td>N.G. North Garage</td>
</tr>
<tr>
<td>S.G. South Garage</td>
</tr>
<tr>
<td>Surface</td>
</tr>
<tr>
<td>Existing Capacities TOTAL</td>
</tr>
</tbody>
</table>

Footnote: refer to Appendices - University of Washington, Bothell Report to the State Legislature Substitute House Bill 2707 – 2004
3.5.3 Phase 3

The next installment of building on campus will continue with Phase 3. The goal of this phase is to create distinguishable identities for each institution. CCC’s next building, the Center for Global Learning & the Arts (CCC-3) will create the framework for a northern plaza and UWB 3 and UWB Science 1 will begin to define a southern plaza.

The main pedestrian circulation, the “Z” diagram will begin to take shape in this phase. The bicycle connection to the Sammamish River Trail will be improved with a new, 5% grade connection to the Lower Campus Road. Further infrastructure improvements include the Reserved/Overflow lot as well as the Physical Plant Expansion.

The placement of the recycling facilities will need to be studied in conjunction with the parking needs as the campus grows.

Phase 3 is expected to be completed in 2013. See page 17 for Area Calculations and Summary for Phase 3.
PHASE 3 2007-2013

CASCADIA COMMUNITY COLLEGE

<table>
<thead>
<tr>
<th>Bldg. No.</th>
<th>Name</th>
<th>GSF</th>
<th>FTE</th>
<th>ASF</th>
<th>ASF / GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCC 3</td>
<td>Center for Global Learning and the Arts</td>
<td>63,442</td>
<td>800</td>
<td>39,651</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>CCC Planned and Exist. SUBTOTAL</td>
<td>174,942</td>
<td>2,000</td>
<td>105,101</td>
<td>0.60</td>
</tr>
</tbody>
</table>

UNIVERSITY OF WASHINGTON BOTHELL

<table>
<thead>
<tr>
<th>Bldg. No.</th>
<th>Name</th>
<th>GSF</th>
<th>FTE</th>
<th>ASF</th>
<th>ASF / GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWB S1</td>
<td>Science</td>
<td>65,000</td>
<td>850</td>
<td>39,000</td>
<td>0.60</td>
</tr>
<tr>
<td>UWB 3</td>
<td>Classroom/Admin</td>
<td>55,000</td>
<td>900</td>
<td>37,400</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>UWB Planned Growth SUBTOTAL</td>
<td>120,000</td>
<td>1,750</td>
<td>76,400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UWB Plan. and Exist. SUBTOTAL</td>
<td>298,000</td>
<td>3,550</td>
<td>183,055</td>
<td></td>
</tr>
</tbody>
</table>

COMBINED CAMPUS SHARED RESOURCES

<table>
<thead>
<tr>
<th>Bldg. No.</th>
<th>Name</th>
<th>GSF-support</th>
<th>Pkg. Structure</th>
<th>Parking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>Surface parking lost</td>
<td>-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>New Surface parkingWEST- RESERVED, OVERFLOW PARKING</td>
<td>193</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL</td>
<td>143,000</td>
<td>365,000</td>
<td>2,091</td>
</tr>
</tbody>
</table>

PHASE 3 COMBINED CAMPUS TOTALS

<table>
<thead>
<tr>
<th></th>
<th>GSF-support</th>
<th>GSF</th>
<th>FTE</th>
<th>ASF</th>
<th>ASF / GSF</th>
<th>Pkg. Structure</th>
<th>Parking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF Total Existing, Planned and Growth</td>
<td>143,000</td>
<td>472,942</td>
<td>5,550</td>
<td>288,156</td>
<td>0.61</td>
<td>365,000</td>
<td>2,091</td>
</tr>
</tbody>
</table>
3.5.4 Phase 4

In Phase 4, beginning in 2013, the campus is projected grow to 7,175 FTE’s. UWB-S2 will complete the Science portion for UWB. CCC-4 will greet visitors at the North end of campus. The Boone-True Ranch House may be relocated to the area near the Chase House.

This phase also recommends the construction of a Student Services Building as well as a Library expansion to complete the heart of the campus.

At this time it is recommended to complete a parking and traffic study to determine if the parking reduction goals are being met for the campus and test the assumptions this study is making regarding maximum parking requirements.

The large parking structure to the south end of campus will house the bulk of parking required by the 1999 City of Bothell Planned Unit Development (PUD).

Phase 4 is expected to be completed in 2019. See page 19 for Area Calculations and Summary for Phase 4.
PHASE 4 2013-2019

CASCADIA COMMUNITY COLLEGE

<table>
<thead>
<tr>
<th>Bldg. No.</th>
<th>Name</th>
<th>GSF</th>
<th>FTE</th>
<th>ASF</th>
<th>ASF / GSF</th>
<th>Pkg. Structure</th>
<th>Parking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCC 4</td>
<td>General Classroom/Admin</td>
<td>54,000</td>
<td>850</td>
<td>37,800</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCC Planned Growth SUBTOTAL</td>
<td>54,000</td>
<td>850</td>
<td>37,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCC Planned and Ph-3 SUBTOTAL</td>
<td>228,942</td>
<td>2,850</td>
<td>142,901</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIVERSITY OF WASHINGTON, BOTHELL

<table>
<thead>
<tr>
<th>Bldg. No.</th>
<th>Name</th>
<th>GSF</th>
<th>FTE</th>
<th>ASF</th>
<th>ASF / GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWB S2</td>
<td>Science</td>
<td>65,000</td>
<td>775</td>
<td>39,000</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>UWB Planned Growth SUBTOTAL</td>
<td>65,000</td>
<td>775</td>
<td>39,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UWB Plan. and Ph-3. SUBTOTAL</td>
<td>363,000</td>
<td>4,325</td>
<td>222,055</td>
<td>0.61</td>
</tr>
</tbody>
</table>

COMBINED CAMPUS SHARED RESOURCES

<table>
<thead>
<tr>
<th>Bldg. No.</th>
<th>Name</th>
<th>GSF</th>
<th>Pkg. Structure</th>
<th>Parking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Ex</td>
<td>Library Expansion</td>
<td>28,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S.</td>
<td>Student Services Building</td>
<td>28,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>Surface parking lost</td>
<td>-158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>New Surface parking</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.G S</td>
<td>Parking Garage South Annex Part 1</td>
<td>393,920</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL</td>
<td>56,000</td>
<td>393,920</td>
<td>492</td>
</tr>
</tbody>
</table>

PHASE 4 COMBINED CAMPUS TOTALS

<table>
<thead>
<tr>
<th>GSF-support</th>
<th>GSF</th>
<th>FTE</th>
<th>ASF</th>
<th>ASF / GSF</th>
<th>Pkg. Structure</th>
<th>Parking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF Total Existing, Planned and Growth</td>
<td>199,000</td>
<td>591,942</td>
<td>7,175</td>
<td>364,956</td>
<td>0.62</td>
<td>758,920</td>
</tr>
</tbody>
</table>
3.5.5 Phase 5

Phase 5 is the complete campus build-out to accommodate 10,000 student FTEs and represents over one million gross square feet in building area. At full build-out the campus will have 3,508 permanent parking spaces and 193 overflow spaces available for events. This plan will accommodate 10,000 student FTEs assuming that the use of alternative transport options triples from current levels.

The recommendation of this study is to maintain as much open natural landscape as possible by placing parking under buildings. In this last Phase, UWB-4 and UWB-5 complete the southwest plaza and are built over underground parking. With approval from the City of Bothell we recommend 180th Street to be relocated to the south to extend the pedestrian core of campus. A Student Recreation Building and CCC-5 flank the North Creek Café east of the lower campus road, each with two levels of parking below.

Phase 5 is expected to be completed in 2025. See page 21 for Area Calculations and Summary for Phase 5.

For additional information, refer to the appendix for sun/shade studies of the two major plazas.
PHASE 5 2019-2025

CASCADIA COMMUNITY COLLEGE

<table>
<thead>
<tr>
<th>Bldg. No.</th>
<th>Name</th>
<th>GSF</th>
<th>FTE</th>
<th>ASF</th>
<th>ASF / GSF</th>
<th>Pkg. Structure</th>
<th>Parking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCC 5</td>
<td>General Classroom/Admin</td>
<td>69,000</td>
<td>1,150</td>
<td>48,300</td>
<td>0.70</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>CCC Planned Growth SUBTOTAL</td>
<td>69,000</td>
<td>1,150</td>
<td>48,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCC Planned and Ph-4 SUBTOTAL</td>
<td>297,942</td>
<td>4,000</td>
<td>191,201</td>
<td>0.64</td>
<td></td>
<td>50,000</td>
</tr>
</tbody>
</table>

UNIVERSITY OF WASHINGTON, BOTHELL

<table>
<thead>
<tr>
<th>Bldg. No.</th>
<th>Name</th>
<th>GSF</th>
<th>FTE</th>
<th>ASF</th>
<th>ASF / GSF</th>
<th>Pkg. Structure</th>
<th>Parking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWB 4</td>
<td>Classroom/Admin</td>
<td>62,500</td>
<td>875</td>
<td>42,500</td>
<td>0.68</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>UWB 5</td>
<td>Classroom/Admin</td>
<td>55,000</td>
<td>800</td>
<td>37,400</td>
<td>0.68</td>
<td></td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>UWB Planned Growth SUBTOTAL</td>
<td>117,500</td>
<td>1,675</td>
<td>79,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UWB Planned and Ph-4. SUBTOTAL</td>
<td>480,500</td>
<td>6,000</td>
<td>301,955</td>
<td>0.63</td>
<td></td>
<td>195,455</td>
</tr>
</tbody>
</table>

COMBINED CAMPUS SHARED RESOURCES

<table>
<thead>
<tr>
<th>Bldg. No.</th>
<th>Name</th>
<th>GSF-support</th>
<th>Pkg. Structure</th>
<th>Parking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.R</td>
<td>Student Recreation Building</td>
<td>40,000</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>Surface</td>
<td>Surface parking lost</td>
<td></td>
<td></td>
<td>-400</td>
</tr>
<tr>
<td>P.G S</td>
<td>Parking Garage South Annex Part 2</td>
<td>410,200</td>
<td></td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL</td>
<td>40,000</td>
<td></td>
<td>655,655</td>
</tr>
</tbody>
</table>

PHASE 5 COMBINED CAMPUS TOTALS

<table>
<thead>
<tr>
<th>GSF-support</th>
<th>GSF</th>
<th>FTE</th>
<th>ASF</th>
<th>ASF / GSF</th>
<th>Pkg. Structure</th>
<th>Parking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF Total Existing, Planned and Growth</td>
<td>239,000</td>
<td>778,442</td>
<td>10,000</td>
<td>493,156</td>
<td>1,414,575</td>
<td>3,701</td>
</tr>
</tbody>
</table>
4. Circulation

4.1 Vehicular Circulation

Full build-out of campus maintains and expands the open use vehicular loop road. In the final phase of construction 180th Street is relocated to the south. This vacated street will become a limited vehicular use road for emergency access and deliveries but takes on a pedestrian character like the existing promenade. Each building on campus is able to be serviced directly from the main loop road or from a limited use road.

The new south access from 522 will require further traffic studies to assess the impact of that volume of traffic entering the site.

4.2 Service and Emergency Access

Service and emergency vehicles will travel along limited access routes as shown on the diagram below. The major pedestrian spine currently doubles as emergency access and this concept will be expanded to serve the interior of the campus.

4.3 Campus Accessibility, Pedestrian and Bicycle Access

A universally accessible campus is the primary goal for pedestrian circulation in this master plan. An overlay to this plan is a secondary means of transversing the site with a series of ramps and stairs. Furthermore, bicycle access from the Burke Gilman Trail to the south will be augmented with a new path linking to the new student recreation center.
The forested sloping site prohibits the most direct means of transversing the site as this would not meet the requirements of the Americans with Disabilities Act (ADA). By orienting the campus buildings parallel to the major contours, a universally accessible path is created. Extending the major pedestrian spine or “street” up the hill in a “Z” allows for all the buildings and open spaces to also remain accessible.

In order to address the challenge of moving across the slope, a secondary network of accessible paths using building lobbies, bridges and elevators connects the campus functions across the grain of the slope and affords all users the ability to “short circuit” the major pedestrian streets. As future, more detailed landscape plans are developed, additional east-west connections should be explored.

The components of the circulation network include:
- Accessible parking; reserved handicapped parking spaces are located at each building along with dedicated spaces in the parking garages.
- Dedicated ADA elevators: a system of elevators with extended hours of operation; these elevators are located to make efficient vertical connections between walkways and plazas at different levels.
- Building elevators: internal elevators to augment the dedicated system.
- Nighttime lighting and security are critical aspects of the specific design of the “after hours” components of the network.
4.4 Open Spaces

The campus plan was developed with three large outdoor gathering spaces in mind. A computer model was implemented to study the solar orientation of the three campus plazas: UWB Plaza, CCC Plaza and the “Shared Heart”. (see appendix for diagrams). This model shows that all the open spaces will receive ample sunlight during most of the year while the surrounding buildings will provide activity, scale and distinct identity to each outdoor space.

The primary space, the Shared Heart (item 1 below) will expand on the existing amphitheater and will be bounded by the Library Expansion and the Student Services building to form the shared campus center. The North and South Plazas will anchor and identify each end of campus and will be developed in a way that distinguishes each institution.

CCC Plaza (item 2 below) will be characterized by the CCC-3 building currently in design and will be the first vertex reached in the “Z” promenade. This plaza will be an extension of the new building and open to the south.

UWB Plaza (item 3 below) is a high plateau situated at the Upper Southwest corner of the site and is the culmination of the “Z” promenade. The plaza captures views to the wetland from the axis formerly created by 180th Street. It was modeled after the vibrant ‘Red Square’ at UW’s Seattle campus, and compares in scale and orientation. It is a complementary experience to the Entry node that currently enlivens the space between UWB-1 and UWB-2 (item 5 below). While this entrance space is inviting and welcoming, it serves to usher people into campus and acts as a gateway. CCC has a corresponding gateway at the northern edge of campus (item 4 below).
5. **Landscape**

5.1 Campus Landscape Evaluation

As the campus grows and buildings are added, it is important to the institutions to preserve the character of this wooded hillside. The existing conifer forest distinguishes the campus, and should be preserved to the extent possible, while giving consideration to each tree’s previous growing conditions and how its structure and character will complement the architecture of the campus.

This careful consideration of the existing trees, and the thoughtful placement of the new development will work together with other preservation measures as outlined on the next page.

Many of the campus’ existing trees will likely be lost when more buildings, accessible pedestrian routes, and roadways are added to the growing campus. The relatively few remaining trees will be isolated visually and physically. When small groups or individual conifers are suddenly isolated after growing as part of a dense forest, these remaining trees are usually vulnerable to damage and toppling from wind and erosion forces that were previously absorbed by the larger mass of trees. Aesthetically, the isolated trees, some with oddly exposed structures and “weak” proportions, can be difficult to assimilate into the communal landscape of a college campus. In contrast, trees that are allowed to grow from youth to maturity in consistent conditions — either isolated or in large groves — develop a structure and visual appearance that are both practically and aesthetically suited to their place on the campus.

It may be desirable to retain some existing trees, but in many areas, the landscape’s long-term value and sustainability may be optimized by replanting with young trees that will have the opportunity to mature in harmony with the new campus condition. Replanted trees will likely live longer and healthier lives, offering more interest and beauty to the people who spend their days on the campus.

5.2 Design Ideas
5.3 Preservation Strategies

How can this amenity - the authentic, forested hillside - be sustained and actually strengthened as the campus grows and the existing trees are likely lost?

One option would be to plant young Douglas Firs and Red Cedars in the newly opened areas. While this option would retain consistency in the species that currently dominate the site, it could damage the special spirit of the current landscape in several ways:

1) It would take many years for the new trees to provide the consistent canopy cover and height that would approach that of the current campus trees.

2) A landscape treed solely with young conifers can feel inherently artificial (due to the omission of early successional trees) and can conjure more associations with tree plantations than with natural, mature landscapes. This is a conflict with the “authentic” character of the current landscape.

3) A landscape replanted directly with conifers, after having supported a previous generation of conifers, will gradually deplete the soil of nutrients such as nitrogen, on which conifers are dependent for long and healthy lives. Therefore the new generation of conifers may be less vigorous and healthy than the existing forest that is so well-loved.

5.4 Years of Change

The forest and the wetlands shall be monitored throughout the development of the campus to assess (and mediate if necessary) the effects of the changing conditions.

This could bring an entirely new resource of learning and cultural integrity to the campus. As the campus grows a successional reforestation strategy can be employed – healing and renewing the campus with staged plantings that follow the natural process of forest development. A first stage of plantings would utilize species that naturally heal cleared forest areas and prepare the soil and microclimate for a new generation of conifers. Benefits include:

1) Early-stage successional species, which include Red Alder, Big Leaf Maple (already a beloved member of the campus landscape), and Willow, grow very quickly to “fill in” openings in the canopy and on the ground. The quick coverage of exposed ground minimizes erosion – a particular concern for a steeply sloped site. The deciduous canopy layer can rapidly increase shade and climate control for people inside and outside of campus buildings.

2) Meanwhile, optimal conditions of nutrients, climate, and shelter are formed for the cultivation of conifer seedlings. Many studies have documented the marked benefits in health, vigor, and lifespan for conifers that are allowed to spend their early years in the “incubator” of an early-successional forest of trees like Alders.

3) The potential benefits for the students and staff are perhaps the most notable opportunities in a successional reforestation strategy. Instead of having to wait for a slow-growing crop of conifers to restore the authentic, North-west character of the campus, students and staff can soon enjoy a “healed” landscape that is cloaked with green and offers visible growth and change with each passing season. While a forest of Maples and Alders is of a different character than one of Firs and Cedars, it can offer an equally inspiring and memorable campus experience, within a shorter period of time.

4) Learning and research opportunities would abound in a growing, changing successional forest. Expanding upon the opportunities of the restored wetland area and other unique campus resources, the upper campus landscape could become a place of passive and scientific observation of natural and managed forest systems. The monitoring and management of the trees could provide active learning opportunities for students from the campus and perhaps from other institutions and universities.
6.0 Concluding Comments

The 2006 Facilities Master Plan is conceived as a ‘living’ document, which will be periodically updated as the campus grows and the needs of the students and faculty change.

Appendix

-- Sun Studies
-- Recommended Growth Model, UW Bothell Report for SHB 2707
-- References
Sun Studies

Cascadia Community College

University of Washington, Bothell
Recommended Growth Model

Includes Tuition Contribution

SHB 2707 Enrollment, Operations Budget, and Capital Requirements Forecast

Scenario 2: Full Buildout over 15 Years

<table>
<thead>
<tr>
<th>Year</th>
<th>Building Type</th>
<th>Construction Estimate</th>
<th>New Building Capacity</th>
<th>Enrollment Increase</th>
<th>Enrollment Total</th>
<th>Enrollment Operations Increase</th>
<th>Operations & Maintenance Increase</th>
<th>Total Annual Increase</th>
<th>Cumulative Budget Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2005</td>
<td>Base year</td>
<td></td>
<td></td>
<td>1,265</td>
<td>16,585,849</td>
<td></td>
<td></td>
<td>16,585,849</td>
<td></td>
</tr>
<tr>
<td>2005-2006</td>
<td>[Bldg 1] Science, Technology & Performance Labs/Office</td>
<td>48,000,000</td>
<td>700 FTE</td>
<td>166</td>
<td>1,431</td>
<td>2,532,352</td>
<td>18,518,201</td>
<td>2,532,352</td>
<td>19,518,201</td>
</tr>
<tr>
<td>2007-2008</td>
<td>[Bldg 1] Science, Technology & Performance Labs/Office</td>
<td>48,000,000</td>
<td>700 FTE</td>
<td>479</td>
<td>2,228</td>
<td>5,623,250</td>
<td>26,250,047</td>
<td>5,623,250</td>
<td>26,250,047</td>
</tr>
<tr>
<td>2009-2010</td>
<td>[Bldg 2] Classroom/Office</td>
<td>20,000,000</td>
<td>700 FTE</td>
<td>649</td>
<td>3,421</td>
<td>9,082,461</td>
<td>45,559,844</td>
<td>9,082,461</td>
<td>45,559,844</td>
</tr>
<tr>
<td>2010-2011</td>
<td>[Bldg 3] Classroom/Office</td>
<td>22,000,000</td>
<td>700 FTE</td>
<td>735</td>
<td>4,156</td>
<td>10,191,906</td>
<td>55,661,749</td>
<td>10,191,906</td>
<td>55,661,749</td>
</tr>
<tr>
<td>2011-2012</td>
<td>[Bldg 3] Classroom/Office</td>
<td>22,000,000</td>
<td>700 FTE</td>
<td>171</td>
<td>4,327</td>
<td>2,431,939</td>
<td>58,093,689</td>
<td>2,431,939</td>
<td>58,093,689</td>
</tr>
<tr>
<td>2012-2013</td>
<td>[Bldg 3] Classroom/Office</td>
<td>22,000,000</td>
<td>700 FTE</td>
<td>178</td>
<td>4,505</td>
<td>2,538,492</td>
<td>60,632,180</td>
<td>2,538,492</td>
<td>60,632,180</td>
</tr>
<tr>
<td>2013-2014</td>
<td>[Bldg 3] Classroom/Office</td>
<td>22,000,000</td>
<td>700 FTE</td>
<td>185</td>
<td>4,690</td>
<td>2,649,886</td>
<td>63,282,066</td>
<td>2,649,886</td>
<td>63,282,066</td>
</tr>
<tr>
<td>2014-2015</td>
<td>[Bldg 3] Classroom/Office</td>
<td>22,000,000</td>
<td>700 FTE</td>
<td>193</td>
<td>4,884</td>
<td>2,786,351</td>
<td>66,048,418</td>
<td>2,786,351</td>
<td>66,048,418</td>
</tr>
<tr>
<td>2015-2016</td>
<td>[Bldg 3] Classroom/Office</td>
<td>22,000,000</td>
<td>800 FTE</td>
<td>204</td>
<td>5,088</td>
<td>2,945,267</td>
<td>68,993,684</td>
<td>2,945,267</td>
<td>68,993,684</td>
</tr>
<tr>
<td>2016-2017</td>
<td>[Bldg 3] Classroom/Office</td>
<td>22,000,000</td>
<td>800 FTE</td>
<td>210</td>
<td>5,288</td>
<td>3,018,625</td>
<td>72,012,309</td>
<td>3,018,625</td>
<td>72,012,309</td>
</tr>
<tr>
<td>2017-2018</td>
<td>[Bldg 3] Classroom/Office</td>
<td>22,000,000</td>
<td>800 FTE</td>
<td>219</td>
<td>5,517</td>
<td>3,151,974</td>
<td>78,164,283</td>
<td>3,151,974</td>
<td>78,164,283</td>
</tr>
<tr>
<td>2018-2019</td>
<td>[Bldg 3] Classroom/Office</td>
<td>22,000,000</td>
<td>800 FTE</td>
<td>228</td>
<td>5,746</td>
<td>3,291,440</td>
<td>82,455,723</td>
<td>3,291,440</td>
<td>82,455,723</td>
</tr>
<tr>
<td>2019-2020</td>
<td>[Bldg 3] Classroom/Office</td>
<td>22,000,000</td>
<td>800 FTE</td>
<td>255</td>
<td>6,000</td>
<td>3,689,638</td>
<td>82,125,381</td>
<td>3,689,638</td>
<td>82,125,381</td>
</tr>
</tbody>
</table>

Total FTE Buildout: 6000
Total Capital Investment: 163,000,000
Total Enrollment Related Resource Investment: 65,139,512
Total Facility Related Resource Investment: 2,475,000
Final Budget Forecast: 84,600,361
The following were utilized in the development of this Master Plan. University of Washington, Bothell and Cascadia Community College will have these available for further review.

University of Washington, Bothell Report to the State Legislature Substitute House Bill 2707 – 2004
Long Range Physical Development Plan - nbbj - 2003
Final Planned Unit Development Approval, Phase 2A - 2/99
Phase 2 Pre-Design Study, Detailed Function & Space Program - 10/98
Pre-Design Study - 3/96
Planned Unit Development - Environmental Impact Statement - 9/95
Project Briefing, Site Acquisition Phase - 12/95
Strategic Plan – NBBJ - 1995