FINAL ENVIRONMENTAL IMPACT STATEMENT

FOR THE DEVELOPMENT OF THE COLLOCATED CAMPUS OF
CASCADIA COMMUNITY COLLEGE & THE UNIVERSITY OF WASHINGTON - BOTHELL
AT RULY FARMS - STRINGTOWN

SEPTEMBER 1995

ISSUED BY
WASHINGTON HIGHER EDUCATION COORDINATING BOARD
September 8, 1995

Dear Interested Citizen:

This Final Environmental Impact Statement (FEIS) was prepared pursuant to the Washington State Environmental Policy Act, RCW 43.21C, WAC Chapter 197-11. The purpose of this FEIS is to respond to comments received on the Draft Environmental Impact Statement for the development and operation of a new college campus at the Truly Farms-Stringtown site.

The Washington Higher Education Coordinating Board will conduct a work session and receive public comment on this Final Environmental Impact Statement on September 19, 1995 at the offices of NBBJ (111 South Jackson Street, Seattle) beginning at 3:00 p.m.

Board action on the FEIS is scheduled for 8:30 a.m. at the September 20, 1995 meeting of the Board, to be held at the Stouffer Madison Hotel (515 Madison Street, Seattle). Public comment will be received at this meeting. The Washington Higher Education Coordinating Board intends to take action by acquiring requisite permits and purchasing the site in late 1995 or early 1996.

Sincerely,

James Reed
Associate Director
FACT SHEET

PROJECT TITLE

University of Washington-Bothell & Cascadia Community College Campus

PROPOSED ACTION

The proposal is the development and operation of a new college campus, comprised of the University of Washington-Bothell branch campus and Cascadia Community College. The proposed campus would be developed in phases, with an eventual student capacity of 10,000 full-time equivalents. This translates into approximately 20,000 individuals (including students, faculty, staff, and visitors), with a projected peak population of approximately 7,400 individuals on the campus at one time. Approximately 1.2 million gross square feet of buildings and 4,200 to 6,600 parking spaces are being planned to accommodate this enrollment level. The schedule of this development would be subject to future legislative appropriations, but full build-out of the campus is not anticipated any earlier than the year 2010. Alternative 1 includes extensive restoration and functional enhancement of those wetlands and that section of North Creek located on the preferred site. The location of North Creek would be returned to its floodplain area and configured in a manner consistent with Western Washington stream/river characteristics. All of the environmental restoration and functional enhancement of the preferred alternative would be completed in the first phase of campus development. The alternatives considered as part of this FEIS include:

Alternative 1: Return North Creek to Floodplain / 4,200 Parking Spaces
Alternative 1a: Return North Creek to Floodplain / 6,600 Parking Spaces
Alternative 2: Leave North Creek in Current Location / 4,200 Parking Spaces
Alternative 2a: Leave North Creek in Current Location / 6,600 Parking Spaces

No Action Alternative

PROJECT LOCATION

Pursuant to legislative direction (Chapter 22, Section 716, Washington Laws 1993 & Chapter 308, Section 1, Washington Laws 1994), the Washington Higher Education Coordinating Board (HECB) has designated the Truly Farms-Stringtown as the preferred location for the colllocated campus (HECB Resolution 93-36). The Truly Farms-Stringtown is a multiple ownership site consisting of approximately 127 acres located within the City of Bothell in that area west of I-405, north of SR 522, and south of Beardslee Boulevard. Truly Farms-Stringtown includes property owned by the Truly Estate, Quadrant Corporation, and numerous parcels located in the area called Stringtown.
FACT SHEET
(continued)

PROJECT LOCATION
(continued)
This FEIS provides information concerning the comparative evaluation of sites considered for the collocated campus. This area of discussion includes a description of the sites considered, a review of the criteria used in evaluating sites, and a summary of the public hearing and administrative decision-making process followed in identifying the Truly Farms-Stringtown as the preferred location for the collocated campus.

PROJECT SPONSOR
Washington Higher Education Coordinating Board

PROPOSED DATE OF IMPLEMENTATION
Operation of University of Washington-Bothell & Cascadia Community College, Phase 1, and would begin in 1998-1999. Construction and operation of future phases are dependent on legislative funding. For planning purposes, later phases are expected to reach full operation by 2010.

LEAD AGENCY
Washington Higher Education Coordinating Board

RESPONSIBLE OFFICIAL & CONTACT PERSON
James A. Reed, Associate Director
Higher Education Coordinating Board
917 Lakeridge Way (PO Box 43430)
Olympia, WA 98504-3430 360/753-7800

LICENSES REQUIRED
The following permits and/or approvals will likely be required:

Federal
- Corps of Engineers (COE), 404 Individual Permit
- Federal Emergency Management Agency (FEMA), Conditional Letter of Map Revision (CLOMR)

State
- Department of Ecology (DOE) and Fisheries, Hydraulics Project Approval (HPA)
- DOE (SEPA EIS & Water Quality Certification)
- Department of Natural Resources (DNR), Forest Clearing Permit

City of Bothell
- Planned Unit Development (PUD)
- Shoreline Substantial Development and Shoreline Conditional Use Permit (also reviewed by DOE)
- Certificate of Zoning Compliance
- Critical Areas Alteration Permit
- Any other necessary permits or approvals to construct and operate the campus that may be required and will be sought by the proponent
FACT SHEET
(continued)

PRINCIPAL CONTRIBUTORS

This document has been prepared under the direction of the Washington Higher Education Coordinating Board. Research and analysis were provided by the following firms:

NBBJ (Prime Consultant - Land & Shoreline Use, Plans & Policies, Population & Housing, Light, Glare & Shadows, Historic & Cultural Resources, EIS Coordination and Production)
111 South Jackson Street
Seattle, WA 98104

Otak (Air, Water, Environmental Health, Land & Shoreline Use, Transportation, Public Services & Facilities, Utilities, EIS Coordination)
620 Kirkland Way / Suite 100
Kirkland, WA 98033

Peter Walker William Johnson & Partners (Aesthetics & Scenic Resources)
739 Alston Way
Berkeley, CA 94710

L. C. Lee & Associates (Water & Wetlands, Plants & Animals, Agricultural Crops)
221 First Avenue West / Suite 415
Seattle, WA 98110

Historical Research Associates, Inc. (Historical & Archaeological Assessment)
119 Pine Street / Suite 207
Seattle, WA 98101

Weinstein Copeland Architects (Aesthetics & Scenic Resources)
1932 First Avenue / Suite 503
Seattle, WA 98101

Aquatic Resource Consultants (Plants & Animals)
1606 Nob Hill Avenue North
Seattle, WA 98109

GeoEngineers (Earth, Water, Environmental Health)
8410 154th Avenue NE
Redmond, WA 98052

Robert Bernstein (Transportation)
507 18th Avenue East
Seattle, WA 98112
FACT SHEET
(continued)

PRINCIPAL CONTRIBUTORS
(continued)

David Kline (Transportation)
8053 Meridian Avenue North
Seattle, WA 98103

Environalysis (Air, Noise)
422 30th Avenue
Seattle, WA 98122

Miller and Associates, Inc. (Public Services & Facilities, Utilities)
209 East Fourth
The White Building / Suite 202
Olympia, WA 98501

The Project Coordinating Team (PCT) is a project oversight group representing the participating institutions, OFM, HECB, and the SBCTC:

Jim Reed, Associate Director, Higher Education Coordinating Board
Ron Bell, President, Shoreline Community College
Mike Bigelow, Senior Budget Assistant for Higher Education
Joe Brawley, University of Washington
John Fricke, Senior Budget Assistant, Office of Financial Management
Dave Habura, President Cascadia Community College
Bill Julius, Assistant Director, State Board for Community & Technical Colleges
Norm Rose, University Washington Bothell Branch Campus
Steve Swant, Director of Capital & Space Planning, University of Washington

The Site Development Advisory Group (SDAG) is a group of agency representatives and area citizens interested in the development of a university/campus at the Truly Farms-Stringtown site:

Anne Aagaard, Bothell, Washington
Mike Bergmen, Metro
Paul Cowles, Bothell, Washington
Bill Dues P.E., Department of Transportation
Bud Erickson, Bothell, Washington
Bob Everitt, Department of Wildlife Region #4 - Mill Creek
Ray Hellwig, Department of Ecology
Peter Hurley, Washington Environmental Council
Ted Pankowski, Woodinville, Washington
Lynwood S. Smith, Bothell, Washington
Richard H. Truly, Bothell, Washington
Bill Wiselogle, City of Bothell Long Range Planning

DATE OF ISSUE OF DEIS
June 20, 1995
| **DATE & PLACE OF PUBLIC HEARING ON DEIS** | July 10, 1995 @ 7:00 p.m.
Ricketts Auditorium
18315 Bothell Way NE
Bothell, Washington |
DATE COMMENTS DUE	July 20, 1995
DATE OF ISSUE OF FEIS	September 8, 1995
DATE OF FINAL ACTION	September 20, 1995
TYPE AND TIMING OF SUBSEQUENT REVIEW	This FEIS completes the project level SEPA review. If the final design of the campus development includes features with significant adverse impacts that are not adequately addressed in this FEIS, then subsequent environmental review would be provided as appropriate.
LOCATION OF BACKGROUND DATA	NBBJ
111 South Jackson	
Seattle, WA 98104	
COST OF DOCUMENT	A limited number of copies are available upon request. Document costs may be charged if supplies are exhausted or numerous copies are requested.
Higher Education Coordinating Board
917 Lakeridge Way
P O Box 43430
Olympia, WA 98504-3430
360/753-7800 |
TABLE OF CONTENTS

Fact Sheet .. i
Table of Contents .. vi
List of Figures .. vii
List of Tables ... vii

I. SUMMARY .. I-1

II. DESCRIPTION OF THE PROPOSAL AND THE ALTERNATIVES II-1
 (Section III in the DEIS is reprinted as Section II in this document.
 All references to tables and figures have been changed to reflect this.)

III. ERRATA, CHANGES AND NEW INFORMATION .. III-1
 A. Errata ... III-1
 B. New Information ... III-6

IV. COMMENTS AND RESPONSES .. IV-1
 A. Public Agencies/Affected Tribes ... IV-2
 B. Individuals, Businesses, and Other Organizations IV-55
 C. Public Hearing Transcript .. IV-86

V. APPENDICES
 A. Distribution List
 B. List of the Elements of the Environment
 C. HRA Historical & Archaeological Resources Assessments
LIST OF TABLES

I-1 Comparative Description of Alternatives ... I-8
II-1 Square Footage Breakdown for UWB/CCC Campus II-3
II-2 Space Categories for UWB/CCC Campus .. II-4
II-3 Parking Demand .. II-6
II-4 Proposed Wetland Communities - Alternative 1/Phase 1 II-11
II-5 Square Footage Breakdown for Phase 1 ... II-14
II-6 Proposed Wetland Communities - Alternative 2 II-17

LIST OF FIGURES

I-1 Regional Context .. I-2
I-2 Vicinity Map .. I-3
II-1 Alternative 1: Return North Creek to Floodplain - 4,200 Parking Spaces II-8
II-2 Alternative 1a: Return North Creek to Floodplain - 6,600 Parking Spaces II-13
II-3 Phase I of Alternatives 1 and 1a .. II-15
II-4 Alternative 2: Leave North Creek in Current Location / 4,200 Parking Spaces II-18
II-5 Alternative 2a: Leave North Creek in Current Location / 6,600 Parking Spaces II-20
II-6 No Action Alternative ... II-21
This summary is intended to provide a synopsis of major actions discussed in the Environmental Impact Statement (EIS). This summary does not provide a complete discussion of all elements of the EIS. Readers are encouraged to review the entire document.

A. PURPOSE AND NEED

The proposal is for the development and operation of a collocated campus of the University of Washington-Bothell branch campus and Cascadia Community College. Both of the institutions are public entities, which have been authorized and directed by the Washington State Legislature to be collocated within the thirtieth community college district (28B.50 and 28B.45 RCW). This is a project-specific Environmental Impact Statement (EIS) and site-specific development impacts are analyzed. The University of Washington-Bothell (UWB) interim operations at Canyon Park and the newly established Cascadia Community College (CCC) are intended to accommodate otherwise unmet enrollment needs for higher education in the service area for each institution. (See Section II.C. and An Evaluation of Alternative Organizational Models for Meeting the Higher Education and Workforce Training Needs, MGT of America, Inc., October 15, 1993 incorporated by reference to this DEIS.)

This DEIS describes and analyzes the impacts of five alternatives:

- Alternative 1: Return North Creek to Floodplain / 4,200 Parking Space
- Alternative 1a: Return North Creek to Floodplain / 6,600 Parking Spaces
- Alternative 2: Leave North Creek in Current Location / 4,200 Parking Spaces
- Alternative 2a: Leave North Creek in Current Location / 6,600 Parking Spaces
- No Action Alternative

Alternative 1 is the “preferred alternative.” It identifies the environmental impacts associated with campus development at build-out in 2010 with approximately 10,000 full-time equivalents (FTEs), and at completion of the first phase in 1999 with approximately 2,000 FTEs. The regional context of the proposed campus and its local vicinity are shown in Figure I-1 and I-2.
Figure I-2
Vicinity Map

University of Washington-Bothell & Cascadia Community College EIS
B. SITE SELECTION AND ENVIRONMENTAL REVIEW PROCESS

SITE SELECTION

Selection of the Truly Farms-Stringtown site as the collocated campus site for the University of Washington-Bothell and Cascadia Community College (UWB/CCC), was based on extensive educational needs analysis, site evaluations, and environmental reviews. The need for a higher educational facility was established in 1987 when the Higher Education Coordination Board (HECB) identified insufficient and inequitable access to upper division baccalaureate education within the State of Washington. In 1989, the Legislature authorized creation of two branch campuses under the direction of the University of Washington and that one of the branches be located in the Bothell/Woodinville area. In 1990, the State Board of Community and Technical Colleges (SBCTC) identified the area of north King County and south Snohomish County as the greatest recent growth in population and the least access to a community college. This led to a 1992 study that considered 27 potential sites for a new community college. A comparative analysis led the SBCTC to select the Truly Farms-Stringtown site as the preferred site. Furthermore, in 1993 the Legislature directed the HECB to evaluate alternative models for delivering higher education and work force training in the same geographic area. The resulting study, led to the HECB recommendation that a new community college be created and that it be collocated with the University of Washington-Bothell branch campus. A final study evaluated three potential sites for the collocated campus and identified the Truly Farms-Stringtown site as the preferred site. In 1994, the legislature authorized the HECB to acquire (pending securing of all required regulatory permits/approvals) the site for the new campus and to undertake campus planning activities. A comparison of potential environmental impacts from campus development at each of the three final sites is included in the DEIS (see Table II-6).

REGULATORY REVIEWS AND APPROVALS

The purchase of the site, and subsequent campus development, is contingent upon obtaining the various regulatory permits and approvals from various Federal, State and local government agencies. Filing various required environmental permits is being coordinated concurrently with the issuance of the EIS.

PERMIT REQUIREMENTS

Most of the permits are reviewed and obtained through one agency, however, some permits require extensive review by multiple jurisdictions. The following permits and/or approvals will likely be required:

Federal
- Corps of Engineers (COE), 404 Individual Permit
- Federal Emergency Management Agency (FEMA), Conditional Letter of Map Revision (CLOMR)
State
- Department of Fish & Wildlife, Hydraulics Project Approval (HPA)
- Department of Ecology (DOE), SEPA EIS & Water Quality Certification
- Department of Natural Resources (DNR), Forest Clearing Permit
City of Bothell
- Planned Unit Development (PUD)
- Shoreline Substantial Development and Shoreline Conditional Use Permit (also reviewed by DOE)
- Certificate of Zoning Compliance
- Critical Areas Alteration Permit
- Any other necessary permits or approvals to construct and operate the campus that may be required and will be sought by the Proponent
C. THE PROPOSAL AND ALTERNATIVES

This EIS examines five alternative plans for the Truly Farms-Stringtown, a multiple ownership site consisting of approximately 127 acres located within the City of Bothell.

- Alternative 1: Return North Creek to Floodplain / 4,200 Parking Spaces
- Alternative 1a: Return North Creek to Floodplain / 6,600 Parking Spaces
- Alternative 2: Leave North Creek in Current Location / 4,200 Parking Spaces
- Alternative 2a: Leave North Creek in Current Location / 6,600 Parking Spaces
- No Action Alternative

The primary difference between Alternatives 1, 1a, 2 and 2a is the treatment of North Creek and its associated wetlands and floodplain. All alternatives, with the exception of the No Action Alternative, are, however, similar in many ways: all propose approximately 1,143,800 gross square feet of campus buildings and 4,200 parking spaces on the site at build-out (Alternatives 1a and 2a are variations with 6,600 parking spaces). All alternatives propose primary site access from the south and secondary site access from the north. All alternatives preserve significant areas of mature upland forest areas. Build-out of the alternatives is projected to occur by 2010. The completion of Phase 1 (Figure II-3) for Alternatives 1 and 1a is projected to occur between 1998 and 1999 and includes the full environmental enhancement program. The key elements of each alternative are described below and are summarized in Table I-1. More detailed descriptions, along with maps and figures, are contained in Section II of this EIS.

ALTERNATIVE 1: RETURN NORTH CREEK TO FLOODPLAIN / 4,200 PARKING SPACES (Figure II-1)

Alternative 1 is the proposed development plan. The Proposal places approximately 1,143,800 gross square feet of campus buildings on the existing hillside. Primary vehicular site access is from SR 522 at the south part of the site. Secondary vehicular access is from Beardslee Boulevard at the north part of the site. Pedestrian and bicycle access is on NE 180th Street and NE 185th Street. NE 185th Street also includes transit access.

North Creek, which currently flows across the site from north to south, is returned to its floodplain in Phase 1 of this alternative. The waters/wetland impact due to campus development is 6.8 acres-1987 protocol, and 8.5 acres-1989 protocol. The amount of wetland fill has been kept to a minimum. The relocation of the stream allows for key linkages between North Creek and its associated wetlands and floodplain. Waters/wetland impacts due to campus development can most likely be mitigated on-site. The total amount of restored/enhanced wetlands is 58 acres-1987 protocol, 60.4 acres-1989 protocol. A small amount of buildable area (less than four acres) is gained by returning North Creek to its floodplain.

By using similar riverine systems in the Puget Sound Basin as a reference, North Creek with its associated wetlands and floodplain, will be able to endure the impacts of increasing urbanization in the watershed. North Creek becomes an amenity to a campus environment and is able to pass large flows of water downstream to the Sammamish River without endangering life or property. The new creek channel will be constructed with meanders, increasing the amount of habitat for fish and other wildlife. The adjacent floodplain areas will help increase water quality and provide a limited amount of flood storage during high flows.
ALTERNATIVE 1A: RETURN NORTH CREEK TO FLOODPLAIN / 6,600 PARKING SPACES (Figure II-2)

Alternative 1a is similar to Alternative 1. The major difference being the 6,600 parking spaces provided on the campus site. The additional parking is accommodated in five new parking structures interspersed throughout the campus. The campus buildings are slightly reconfigured to accommodate the additional parking structures. The wetland impact due to campus development is the same as Alternative 1 (6.8 acres-1987 protocol, 8.5 acres-1989 protocol). Figure II-2 highlights the differences between Alternatives 1 and 1a.

ALTERNATIVE 2: LEAVE NORTH CREEK IN CURRENT LOCATION / 4,200 PARKING SPACES (Figure II-4)

Alternative 2 contains many of the campus features of Alternative 1. The primary difference is the treatment of North Creek and its associated waters/wetlands and floodplain. Alternative 2 leaves North Creek in its current location, developing the campus on the hillside similar to Alternative 1.

Several acres (6.1 acres-1987 protocol, 7.6 acres-1989 protocol) of upland waters/wetlands are proposed to be filled in the development of the campus. The total amount of restored/enhanced wetlands is 63 acres-1987 protocol, 65.4 acres-1989 protocol. However, due to limited linkages between North Creek, its floodplain, and associated wetlands, additional off-site mitigation may be required. Additional parcels of land, should they be needed for mitigation purposes, have not been identified.

Increasing flows from upstream urbanization of the North Creek watershed increase the possibility of future damage/failure to the channel and/or levees. Ongoing levee maintenance will be required in this alternative. This alternative does not attempt to increase flood storage capacity or water quality on-site. Some habitat enhancement is proposed.

ALTERNATIVE 2A: LEAVE NORTH CREEK IN CURRENT LOCATION / 6,600 PARKING SPACES (Figure II-5)

Alternative 2a is similar to Alternative 2. The major difference being the 6,600 parking spaces provided on the campus site. The additional parking is accommodated in five new parking structures interspersed throughout the campus. The campus buildings are slightly reconfigured to accommodate the additional parking structures. The wetland impact due to campus development is the same as Alternative 2 (6.1 acres-1987 protocol, 7.6 acres-1989 protocol). The total amount of restored/enhanced wetlands is also identical to Alternative 2 (63 acres-1987 protocol, 65.4 acres-1989 protocol). However, due to limited linkages between North Creek and the floodplain, additional off-site mitigation may be required, similar to Alternative 2. Figure II-5 highlights the differences between Alternatives 2 and 2a.

NO ACTION ALTERNATIVE (Figure II-6)

The No Action Alternative proposes no change to the Truly Farms-Stringtown and associated properties. However, given the large site location near central Bothell and the fact that the land is mainly undeveloped, it can be expected that development would occur in the future. Past proposals for development on the site have included office parks and a shopping center.
D. **Comparative Description of Alternatives**

Table I-1 describes how each alternative is similar or different across a range of evaluation criteria.
| **Table I-1**
Comparative Description of Alternatives |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1
Return North Creek to Floodplain / 4,200 Parking Spaces</td>
</tr>
<tr>
<td>Alternative 1a
Return North Creek to Floodplain / 6,600 Parking Spaces</td>
</tr>
<tr>
<td>Alternative 2
Leave North Creek in Current Location / 4,200 Parking Spaces</td>
</tr>
<tr>
<td>Alternative 2a
Leave North Creek in Current Location / 6,600 Parking Spaces</td>
</tr>
<tr>
<td>No Action Alternative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAMPUS FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus Buildings
2 formal promenades, 3.5 acre "green," good interface with restored floodplain</td>
</tr>
<tr>
<td>Same as Alternative 1</td>
</tr>
<tr>
<td>Same as Alternative 1, except 2.5 acre "green" and levees restrict interface with floodplain</td>
</tr>
<tr>
<td>Same as Alternative 2</td>
</tr>
</tbody>
</table>

| **Fit with the Community**
Compatible with adjacent land uses, community access, sensitive buffering |
| Same as Alternative 1 |
| Same as Alternative 1 |
| Same as Alternative 1 |

<table>
<thead>
<tr>
<th>ACCESS & CIRCULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Access
Primary-from SR 522, secondary from Beardslee, pedestrian and bike only from NE 180th, transit from NE 185th</td>
</tr>
<tr>
<td>Same as Alternative 1</td>
</tr>
<tr>
<td>Same as Alternative 1</td>
</tr>
<tr>
<td>Same as Alternative 1</td>
</tr>
</tbody>
</table>

| **Parking**
60% transit & HOV/mode split, 4,200 parking spaces on-site, capability to expand on-site parking |
| 17% transit & HOV mode split, 6,600 parking spaces on-site, limited capability to expand on-site parking |
| Same as Alternative 1 |
| Same as Alternative 1a |

| **Pedestrian and Bicycle Circulation**
Access via NE 180th, NE 185th, and Sammamish River, and North Creek Trail systems |
| Same as Alternative 1 |
| Same as Alternative 1 |
| Same as Alternative 1 |
| No connection to North Creek or Sammamish River Trails |

| **Fire Access**
Would comply with all fire access and circulation requirements |
| Same as Alternative 1 |
| Same as Alternative 1 |
| Same as Alternative 1 |
Table I-1, continued
Comparative Description of Alternatives

<table>
<thead>
<tr>
<th></th>
<th>Alternative 1</th>
<th>Alternative 1a</th>
<th>Alternative 2</th>
<th>Alternative 2a</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN SPACE</td>
<td>Return North Creek to Floodplain / 4,200 Parking Spaces</td>
<td>Return North Creek to Floodplain / 6,600 Parking Spaces</td>
<td>Leave North Creek in Current Location / 4,200 Parking Spaces</td>
<td>Leave North Creek in Current Location / 6,600 Parking Spaces</td>
<td>Future development proposals could have greater impact on sensitive areas</td>
</tr>
<tr>
<td>Restoration and Enhancement</td>
<td>North Creek returned to floodplain, wetland impacts mitigated on-site</td>
<td>Same as Alternative 1</td>
<td>North Creek remains in existing location, wetland impacts may not be mitigated on-site</td>
<td>Same as Alternative 2</td>
<td>Future development could place large parking areas in the floodplain</td>
</tr>
<tr>
<td>Campus Open Space</td>
<td>Major stands of forest preserved, promenades connect buildings with variety of open spaces</td>
<td>Same as Alternative 1</td>
<td>Same as Alternative 1</td>
<td>Same as Alternative 1</td>
<td>Future development could place large parking areas in the floodplain</td>
</tr>
<tr>
<td>Campus Gateways</td>
<td>Primary access from SR 522 enters in park like setting, secondary entrance from Beardslee enters through new evergreen forest</td>
<td>Same as Alternative 1</td>
<td>Same as Alternative 1</td>
<td>Same as Alternative 1</td>
<td>Future development could place large parking areas in the floodplain</td>
</tr>
<tr>
<td>Buffers</td>
<td>Adjacent residential areas screened from campus development, buffers established in Phase 1</td>
<td>Same as Alternative 1</td>
<td>Same as Alternative 1</td>
<td>Same as Alternative 1</td>
<td>Future development could be less appropriate to adjacent residential areas</td>
</tr>
</tbody>
</table>
E. SUMMARY OF IMPACTS, MITIGATION MEASURES, AND SIGNIFICANT UNAVOIDABLE ADVERSE IMPACTS

The following elements of the natural and built environments were analyzed in the EIS as directed by the Lead Agency based on public scoping and the public review process. Impacts from the proposed action and alternatives as well as mitigating measures are summarized below. For a detailed description of impacts, mitigation measures and significant unavoidable adverse impacts see Section II.

Earth

The quantities for earthwork for Alternatives 1 and 1a are approximately 300,000 cubic yards of excavation and less than 200,000 cubic yards of fill. Phase 1 quantities for earthwork would include about 115,000 cubic yards of excavation and about 85,000 cubic yards of fill. Alternative 2 and 2a quantities for earthwork include over 260,000 cubic yards of excavation and less than 150,000 cubic yards of fill. Mitigation measure will focus on providing adequate foundation support for structures, roads and utilities; implementing effective erosion and sedimentation control; and providing adequate ground water drainage during and after construction. No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Air

Air quality would decrease slightly due to increased vehicular traffic with carbon monoxide emission from the increased activity at the campus site for all of the proposed alternatives. No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Water & Wetlands and Plants & Animals

Alternatives 1, 1a, and Phase 1 include the realignment of North Creek from its present location. Alternatives 1 and 1a would impact 6.8 to 8.5 acres of wetlands/waters (depending on the delineation protocol) to accommodate the construction of campus buildings, parking facilities and roads. Alternatives 1 and 1a would impact 17.8 to 24.9 acres of wetlands/waters (depending on the delineation protocol) to accommodate activities associated with the relocation of North Creek, elimination of the existing drainage network, planting of native wetland vegetation, and mass grading for restoration of the floodplain.

Alternatives 2 and 2a would impact 6.1 to 7.6 acres of wetlands/waters (depending on the delineation protocol) to accommodate the construction of campus buildings, parking facilities and roads. Alternatives 2 and 2a would impact 17.9 to 22.8 acres of wetlands/waters (depending on the delineation protocol) to accommodate activities associated with elimination of the existing drainage network, planting native wetland vegetation, and mass grading for restoration of the floodplain. Alternatives 2, 2a and No Action do not adequately restrain the stream from overflowing its banks during certain flood events.

Alternatives 1 and 1a would restore approximately 60 acres of complex emergent, scrub-shrub, and forested riverine wetlands. This provides a ratio of restoration area to impact area ranging from 2.4:1 to 1.8:1. Alternatives 2 and 2a would restore approximately 65 acres of complex emergent, scrub-shrub, and forested wetlands. This provides a ratio of restoration area to impact area ranging from 2.6:1 to 2.2:1.
Alternatives 1 and 1a, and Phases 1, 2 and 2a would clear the majority of the existing vegetation south of NE 180th Street. All alternatives and Phase 1 would preserve the majority of existing mature evergreen forest north of NE 180th Street. Tree preservation and protection measures would include, but not be limited to: field staking of campus road and pathway, clustering of campus buildings, minimize impervious surfaces under drip lines of trees, retaining walls.

The Federal Clean Water Act Section 404 and attendant EPA guidelines (404(b)(1) [(40 CFR 232-233)] define the “retabletable presumption” that any discharge of pollutants (e.g. “fill”) into “Waters of the U.S.” (including wetlands) is a “significant unavoidable impact.” Consistent with requirements articulated in the 404(b)(1) Guidelines, all practicable alternatives must be used to avoid discharges to waters/wetlands. Therefore, only unavoidable adverse impacts are the subject of permit review. After avoidance, the permit applicant must minimize, then mitigate unavoidable impacts to waters, including wetlands.

The Washington State Administrative Code, WAC 197-11, requires that impacts to the natural and built environments be analyzed, along with any mitigating measures to address these impacts. Any impacts that cannot be avoided or mitigated are described as significant unavoidable adverse impacts in the DEIS.

It is therefore possible that a project can call for filling waters/wetlands, propose extensive mitigation measures for impacting those wetlands, and end up with no “significant unavoidable adverse impacts” according to SEPA regulations. According to the Clean Water Act Section 404 and attendant EPA Guidelines, however, any wetland fill is a “significant unavoidable impact,” no matter how it is mitigated.

According to SEPA, there are no significant unavoidable adverse impacts for this action. For the purpose of this DEIS, “significant unavoidable adverse impacts” are based on the requirements set forth in the Clean Water Act Section 404 and attendant EPA Guidelines, which exceed the SEPA requirements. The more stringent Federal requirements were applied to the alternatives in order to subject them to the highest possible threshold criteria.

Under the Federal criteria, significant unavoidable adverse impacts for Alternatives 1, 1a and Phase 1 would be filling 6.8 to 8.5 acres (depending on the delineation protocol) of waters/wetlands for campus construction. Alternatives 2 and 2a propose filling 6.1 acres to 7.6 acres (depending on the delineation protocol) of waters/wetlands for campus construction. Alternatives 1, 1a, and Phase 1 propose filling 17.8 acres to 24.9 acres (depending on the delineation protocol) of waters/wetlands for historic floodplain restoration/enhancement. Alternatives 2 and 2a propose filling 17.9 acres to 22.8 acres (depending on the delineation protocol) of waters/wetlands for historic floodplain restoration/enhancement.

Significant unavoidable adverse impacts for No Action would be the possibility of levee failure over time at the site.

Noise

Existing traffic noise levels are forecast to increase unrelated to the UWB/CCC construction and/or operation. The Transportation Management Plan (TMP) for the campus would implement a complete range of campus travel demand management measures that increase the ratio of people to vehicles and reduces the number of vehicles using the existing road system. No significant unavoidable adverse impacts are anticipated with any of the alternatives.
Risk of Explosion or Hazardous Emissions

No significant unavoidable adverse impacts are anticipated.

Land and Shoreline Use

The development density of the site would be increased by 1,143,800 gross square feet. Portions of the campus would be fully available to the public, including the proposed regional trail link, whereas now the property is entirely privately owned. Buffers of mature trees would be preserved at the property boundaries adjacent to residences and other sensitive properties. No significant secondary or cumulative land use impacts are anticipated. Unavoidable impacts of the proposed campus development would be altering and intensifying the use of the collection of existing properties that comprise the site.

Relationship to Existing Plans and Policies

The proposed campus development is consistent with applicable plans and policies. Development would comply with relevant City of Bothell zoning and other regulatory requirements. No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Population and Housing

The current resident population on the proposed campus site amounts to less than 25 people living in nine single family housing units. This resident population and housing would be displaced by the proposed campus; the Chase house and the Truly residence would be preserved. No housing units or permanent resident population is proposed for the campus. Fair compensation would be provided to acquire the existing homes on the campus site. Relocation assistance, as allowed by law, would be provided. No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Light, Glare and Shadows

An increase in the amount of nighttime lighting and glare would be produced by the proposed campus development. Retention of the existing evergreen forest would reduce light spillage and glare. The forest edge would be retained and enhanced, along the perimeter of the site, with understory plantings. There would be no significant unavoidable adverse impacts anticipated with any of the alternatives.

Aesthetic/Scenic Resources

Campus buildings would be situated along the hillside ranging from two to five stories in height. Building materials could include architectural CMU, brick, and precast concrete trim. North Creek would meander across its floodplain and a mosaic of different wetland types will cover the entire floodplain. Groups and bands of mature trees in the upland portion of the site would be preserved. No significant unavoidable adverse impacts are anticipated with any of the alternatives.
Historic and Cultural Resources

There is one designated historic site/structure on the proposed campus site. The Dr. Reuben Chase house is located in the Stringtown area and is on the National Register of Historic Places. The nearby Bothell Cemetery is listed in the State Register of Historic Places. The City of Bothell has nominated the cemetery for listing in the National Register. Each of the alternatives proposes to remove all existing structures on site except for the Dr. Chase house and the Truly house, which are planned to be retained and re-used according to the Secretary of the Interior's Standards for Rehabilitation. No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Agricultural Crops

All alternatives would eliminate livestock and cropping operations on the "Truly Farms" portion of the campus site. There would be no mitigation measures to compensate for impacts to cropping and livestock operations. No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Transportation

It is estimated that approximately three-fourths of 9,650 students, faculty, staff and visitors coming to the campus on a typical day would be there at one time (approximately 7,400 individuals). Alternatives 1 and 2 utilize the adopted campus transportation demand management goal of 60% transit/HOV (15% transit, 45% HOV), yielding a daytime parking demand of 4,200 spaces. This means that 60% of the people coming to the campus (at build-out on peak weekdays) would arrive via transit or carpool.

Alternatives 1a and 2a utilize typical peak hour suburban transit and carpooling rates of 17% transit/HOV (2% on transit, 15% HOV), yielding a daytime parking demand of 6,600 spaces. This means that 17% of the people coming to the campus (at build-out on peak weekdays) would arrive via transit or carpool.

The evening parking demand for all alternatives assumes typical peak hour suburban transit and carpooling rates to reach an estimated demand of 4,200 spaces. Therefore, if the transportation demand management goal can be achieved, parking provided to meet the evening demand will also be sufficient to meet daytime demand.

One of the major benefits of phasing the campus development is the ability to adjust future construction phases to accommodate needs as they evolve. The campus development will be time-phased depending on availability of State construction funding, with Phase 1 scheduled for construction in the 1998-1999 time frame. Build-out of the campus is not anticipated before the year 2010, and in fact may occur in a much longer time frame. Part of the campus transportation demand management program would include monitoring of transit and carpooling rates. The results of the monitoring will help determine the amount of parking needed on campus for future phases. The campus, at build-out, has the ability to accommodate from 4,200 to 6,600 parking spaces on-site. If monitoring shows that the transportation demand management goal of 60% transit/HOV is not being met, both Alternatives 1 and 2 have the ability to expand on-site parking in future phases if needed.

A Transportation Demand Management Plan would be developed to assist in reaching this goal and might include any number of the following measures:

- Transit fare and vanpool subsidies
- Transit service increases
- Evening and midday shuttle service to downtown Bothell and surrounding neighborhoods and business areas
- Priority parking and reduced parking fees for carpools and vanpools
- Ridematch program
- Program monitoring/evaluation
- Information/marketing program

Implementation of some or all of these transportation management actions would be dependent, in part, on the dollar operating budget availability for each institution.

Parking management would help control the impact to Bothell and the surrounding neighborhood and might include:

- Parking restrictions and/or a residential parking zone around the campus in order to prevent campus-related parking on neighborhood streets

No significant unavoidable adverse impacts are anticipated with implementation of any of the alternatives.

Public Services and Facilities

The proposed campus development would increase demand for fire and emergency services, and police protection. All campus buildings would be designed and constructed in accordance with applicable building and fire (life safety) codes. The Interlocal Agreement between the HECB and the City of Bothell, stipulates that the UWB/CCC and the City would negotiate in good faith for funding of fire and emergency medical services provided by the City. No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Utilities

Impacts on the water service system, for Alternatives 1, 1a, 2, and 2a, would consist of an increase in water demand of 304,500 gallons per day. Phase 1 impact on the water system would consist of an increase in water demand of 58,200 gallons per day. Sanitary sewer flows for the site would be about 182,700 gallons per day for Alternatives 1, 1a, 2, and 2a. Sanitary sewer flows for the site would be about 35,000 gallons per day for Phase 1. Alternatives 1, 1a, 2 and 2a are estimated to consume a peak level of approximately 8.5 megawatts (8,578 kw) of electricity for interior and exterior lighting, air cooling systems, and other facilities. Alternatives 1, 1a, 2 and 2a are estimated to consume approximately 15,230 to 22,850 cubic feet per hour (or 133 to 200 million cubic feet per year) in natural gas usage, assuming that gas would be used for space and water heating through decentralized systems in each building. A section of existing 2-inch main on both 104th Avenue NE and Bothell-Hollywood
Road would need to be replaced with 4-inch main to alleviate the existing “bottleneck” and adequately serve the campus. Phase 1 is estimated to consume 1.6 megawatts (1,605 kw) of electricity at peak demand. Phase 1 is estimated to use 2,850 to 4,275 cubic feet of natural gas per hour (24 to 27 million cubic feet per year) assuming that gas would be used for space and water heating through decentralized systems in each building.

The City of Bothell has stated that there is adequate water supply to meet the proposed campus build-out water demand. The proposed campus sanitary sewer system would be two separate systems: one would connect to the Metro trunkline, the second would connect to the existing City of Bothell 20-inch main at the south end of the project site. Both sanitary sewer lines have adequate capacity for the proposed flows.

Buildings and facilities would be designed in accordance with all applicable energy code requirements. According to the Interlocal Development Agreement between the HECB and the City of Bothell, the UWB/CCC would agree to pay all applicable permit fees, facility charges and deposits, and other sums as required by ordinances of the City of Bothell related to building code and other construction related permits or utility hook-ups. No significant unavoidable adverse impacts are anticipated with any of the alternatives.

F. AREAS OF CONTROVERSY OR UNCERTAINTY AND ISSUES TO BE RESOLVED

The following issues are among those to be resolved for decision makers to reach a decision on the University of Washington-Bothell/Cascadia Community College Master Plan.

- What are the impacts upon access to higher education in north King and south Snohomish County with and without this campus?
- Is it appropriate to fill six to seven acres of waters/wetlands (depending on the alternative) for campus development given the fact that the planned restoration would yield 58-63 acres (depending on the alternative) of restored/enhanced waters/wetlands?
- Is it cost-beneficial to relocate North Creek in order for the campus development to occur on the Truly Farms-Stringtown site?
- What transportation demand management measures can be implemented to reduce the number of single occupancy vehicles arriving and departing from the site in order to achieve the very aggressive transit and HOV mode split goals and minimize the campus’ impact on the areawide transportation system.
- What measures can be taken to optimize parking and vehicular access for the campus, and prevent traffic from impacting adjacent areas of Bothell?
DESCRIPTION OF THE PROPOSAL AND THE ALTERNATIVES
A. BACKGROUND

As described in Section II: Site Selection (of the DEIS) the organizational and physical plan for the collocation of two institutions, the University of Washington-Bothell (UWB) and Cascadia Community College (CCC), has its roots in the actions of the State Legislature. The 1989 and 1991 State Legislatures established and reaffirmed State policy concerning the expansion of access to lower and upper division and graduate level education in the State’s urban areas. Specifically, the 1989 Legislature authorized creation of four branch campuses and appropriated funds for their planning and development. As part of that authorization, the University of Washington was designated the responsible institution for a branch campus to be established in the Bothell-Woodinville area. In 1991, the Legislature continued its support for expanded access to higher education by appropriating additional physical development funds for the branch campuses and authorizing planning funds for a new community college in the north Lake Washington area.

In response to the authorization of the 1989 and 1991 Legislature, the Wellington Hills golf course was selected as the permanent site for the University of Washington-Bothell branch campus and a preliminary Environmental Impact Study and Master Plan for the Wellington Hills campus were completed. The University of Washington-Bothell campus was opened in an interim setting, the Canyon Park Business Center. Concurrently, the State Board for Community and Technical Colleges (SBCTC) proceeded with a site selection study for the new community college. The SBCTC study identified the Truly Farms site as the preferred location for the proposed new community college.

Subsequent to these planning studies, the 1993 Legislature directed the Higher Education Coordinating Board (HECB) to evaluate alternative organizational models and sites for meeting the post secondary education needs of the north King and south Snohomish County area. That evaluation, the Campus Planning Study, led to HECB Resolution 93-36 which recommended that a new community college be created and that it be collocated with the University of Washington-Bothell branch campus. Additionally, the HECB designated the Truly Farms-Stringtown site as the preferred location for the collocated campus and recommended that it be purchased if the site can provide sufficient capacity and if requisite environmental approvals can be obtained.

In response to these recommendations and actions, and with strong support from the local community, the 1994 Legislature authorized formation of the 30th Community College District and creation of Cascadia Community College. That authorization specifies, in part, that Cascadia Community College and the Bothell branch campus of the University of Washington shall be collocated. To support development of the collocated campus, the Legislature authorized property acquisition and compilation of a development plan for the collocated campus. That authorization specifies the HECB as the lead agency for the site acquisition phase of the collocation project and that the requisite property be purchased upon satisfactory completion of the physical master plan and the appropriate environmental studies and reviews.
B. CAMPUS OBJECTIVES

The primary objective of the proposal is the development and operation of a collocated campus of the University of Washington-Bothell branch campus and Cascadia Community College on the Truly Farms-Stringtown site. The following objectives were established early in the master planning process by the HECB, PCT, SDAG and the consultant team to guide campus development on the Truly Farms-Stringtown site.

On-Site Campus Features

Provide a sense of place and permanence

- Create and distinguish the identity of each institution
- Ensure clear site orientation and way finding
- Ensure safety and security on campus

Provide opportunities for encounters among students, faculty, staff and visitors within the campus landscape

Create a high quality aesthetic experience with a sensitive interface with the natural environment

- Enhance views in and out of the site
- Provide opportunities for environmental education
- Ensure flexibility in campus development and expansion

Community Fit

Meet community goals and objectives

- Respect and restore the natural environment
- Offer access for the public to education, recreation, and environmental resources
- Complete trail linkages between North Creek and Sammamish River Trails
- Create economic liaisons with the business community
- Comply with community codes and regulations

Transportation

Maximize campus linkages with the regional and local transit systems

- Support and encourage transit use and ride-sharing by students, faculty and staff
- Provide convenient pedestrian and bicycle linkages
- Minimize campus traffic impact on downtown Bothell and nearby residential streets
- Minimize conflicts between campus traffic and North Creek Valley traffic
- Facilitate direct access between campus and regional highway system
Environment

Respect natural features and environment of the site

- Campus should serve a pedagogical purpose regarding responsive human use of the environment
- Provide wetland mitigation to leap ahead of impacts associated with campus development

Restore wetland and stream ecosystem functions to more natural, complex and self-sustaining conditions
Maximize retention of forested uplands

- Balance protection and public access to wetlands and streams
- Create public access to site, including recreation and environmental education

C. Development Program and Timeframe

Space Program Summary

The estimated space needed to accommodate the forecast enrollment of 9,924 FTEs is summarized below. The space estimates are of two types, assignable square feet (ASF) and gross square feet (GSF). ASF is defined as that space directly usable for a function. GSF includes space for major circulation between functions and common support space (e.g., lavatories and mechanical/electrical spaces). This space program represents a reasonable estimate of what the total campus space requirements could be over the next 20 to 30 years, to serve as a guide or reference point for campus planning and construction activities. Actual build-out would be determined by future program requirements, teaching delivery methods, new technology and funding of campus facilities.

Table II-1
Square Footage Breakdown for UWB/CCC Campus

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Approximate Gross Square Feet</th>
<th>% of Total Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom/Office Buildings</td>
<td>377,100</td>
<td>33%</td>
</tr>
<tr>
<td>Library</td>
<td>168,300</td>
<td>15%</td>
</tr>
<tr>
<td>Student Services</td>
<td>146,100</td>
<td>13%</td>
</tr>
<tr>
<td>Performing Arts</td>
<td>30,800</td>
<td>2%</td>
</tr>
<tr>
<td>Physical Plant</td>
<td>54,500</td>
<td>5%</td>
</tr>
<tr>
<td>Gym</td>
<td>34,600</td>
<td>3%</td>
</tr>
<tr>
<td>Daycare</td>
<td>53,800</td>
<td>5%</td>
</tr>
<tr>
<td>Teaching/Laboratory Buildings</td>
<td>278,600</td>
<td>24%</td>
</tr>
<tr>
<td>Total</td>
<td>1,143,800</td>
<td>100%</td>
</tr>
</tbody>
</table>
Planning Assumptions and Space Standards

The methodology employed in compiling these estimates is described in reference document, Planning Background Study. In summary, the forecast enrollment was applied to the specific space estimating relationships for each type of space as used in national higher education space planning models and the recently updated Facilities Evaluation and Planning Guide (FEPG). The FEPG was developed for use by higher education institutions in the State of Washington. Reflected in these estimating relationships are the campus' hours of operation, a range of teaching delivery methods, the likely frequency and duration of campus stays for students, faculty and staff, scheduling of classes, appropriate class and station sizes, etc. These standards were reviewed by the key planning persons in both the UWB and CCC. (The expressed intentions of the two institutions with respect to shared/coordinated use of space on the collocated campus is indicated below.)

Shared Space

Common facilities are those that have minimal or no assignment of space to one or the other institution.

Simultaneous or joint use facilities are those that house functions each institution performs, but which for reasons of service and economy should be in one area. Separate institutional identities and space may exist within the larger joint use area. Students and others are guided to services of one or the other institution.

Coordinated use facilities are used by one or the other institution, separately, at different times, not simultaneously. Examples include classroom spaces that are not assigned to either institution, and the performing arts facility.

Dedicated facilities or spaces are those provided primarily for the use of one or the other institution.

Table II-2
Space Categories for UWB/CCC Campus

<table>
<thead>
<tr>
<th>Common Facilities</th>
<th>Joint Simultaneous Use</th>
<th>Coordinated Use</th>
<th>Dedicated Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library</td>
<td>Admissions</td>
<td>Assembly</td>
<td>Administration</td>
</tr>
<tr>
<td>Computer Labs (some)</td>
<td>Advising</td>
<td>Performing Arts</td>
<td>Computer Labs</td>
</tr>
<tr>
<td>Transfer Center</td>
<td>Financial Aid</td>
<td>Classrooms (some)</td>
<td>Classrooms (some)</td>
</tr>
<tr>
<td>Multimedia Centers (some)</td>
<td>Registration</td>
<td></td>
<td>Multimedia (some)</td>
</tr>
<tr>
<td>Child Care</td>
<td>Career & Placement</td>
<td></td>
<td>Faculty Offices</td>
</tr>
<tr>
<td>Security</td>
<td>Counseling</td>
<td></td>
<td>Academic Advising</td>
</tr>
<tr>
<td>Maintenance/Central Plant</td>
<td></td>
<td></td>
<td>Writing Center</td>
</tr>
<tr>
<td>Parking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Center/Union</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Book Store</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Counseling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>News & Sundries</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technology Impact on Space Requirements

Underlying the space estimates are a number of assumptions on the role of technology on the new campus that are therefore important to the physical master planning effort. The assumptions defined over the course of the project include those for distance learning, and the use of technology in the library, computer laboratories, classrooms, etc. throughout the campus.

Distance learning is defined as instruction provided to UWB and CCC students via telecommunications methods. Examples include classes originating on the UW Seattle campus provided via interactive television production on the Bothell campus as well as classes originating on the Bothell campus and provided to off campus students in other settings. The distance learning environment would be for both individuals and groups and in some cases would be of two-way, interactive capability.

Electronic functions accessed from computer connections distributed throughout the campus include, at a minimum, those currently provided at the University of Washington:

- E-mail
- Library reference and databases
- Course catalogue and degree planning assistance
- Registration and class scheduling

With respect to library space, the assumed technology includes reference/browsing functions electronically decentralized but also provided in the library facility as well as a single automated catalogue.

Parking Demand / Travel Demand Management

It is estimated that approximately three-fourths of 9,650 students, faculty, staff and visitors coming to the campus on a typical day would be there at one time (approximately 7,400 individuals). Alternatives 1 and 2 utilize the adopted campus transportation demand management goal of 60% transit/HOV (15% transit, 45% HOV), yielding a daytime parking demand of 4,200 spaces. This means that 60% of the people coming to the campus (at build-out on peak weekdays) would arrive via transit or carpool.

Alternatives 1a and 2a utilize typical peak hour suburban transit and carpooling rates of 17% transit/HOV (2% on transit, 15% HOV), yielding a daytime parking demand of 6,600 spaces. This means that 17% of the people coming to the campus (at build-out on peak weekdays) would arrive via transit or carpool.

The evening parking demand for all alternatives assumes typical peak hour suburban transit and carpooling rates to reach an estimated demand of 4,200 spaces. Therefore, if the transportation demand management goal can be achieved, parking provided to meet the evening demand will also be sufficient to meet daytime demand.
One of the major benefits of phasing the campus development is the ability to adjust future construction phases to accommodate needs as they evolve. The campus development will be time-phased depending on availability of State construction funding, with Phase 1 scheduled for construction in the 1998-1999 time frame. Build out of the campus is not anticipated before the year 2010, and in fact may occur in a much longer time frame. Part of the campus transportation demand management program would include monitoring of transit and carpooling rates. The results of the monitoring will help determine the amount of parking needed on campus for future phases. The campus, at build out, has the ability to accommodate from 4,200 to 6,600 parking spaces on-site. If monitoring shows that the transportation demand management goal of 60% transit/HOV is not being met, both Alternatives 1 and 2 have the ability to expand on-site parking in future phases if needed.

A Transportation Demand Management Plan would be developed to assist in reaching this goal and might include any number of the following measures:

- Transit fare and vanpool subsidies
- Transit service increases
- Evening and midday shuttle service to downtown Bothell and surrounding neighborhoods and business areas
- Priority parking and reduced parking fees for carpools and vanpools
- Ridematch program
- Program monitoring/evaluation
- Information/marketing program

Implementation of some or all of these transportation management actions would be dependent, in part, on the dollar operating budget availability for each institution.

<table>
<thead>
<tr>
<th>Table II-3 Parking Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build-Out (10,000 Student FTEs)</td>
</tr>
<tr>
<td>Conventional Suburban Planning Assumptions</td>
</tr>
<tr>
<td>Bus/Carpool</td>
</tr>
<tr>
<td>17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Build-Out (10,000 Student FTEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Management Goal</td>
</tr>
<tr>
<td>Bus/Carpool</td>
</tr>
<tr>
<td>60%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase I (2,000 Student FTEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Planning Assumptions</td>
</tr>
<tr>
<td>Bus/Carpool</td>
</tr>
<tr>
<td>17%</td>
</tr>
</tbody>
</table>
RESTORATION / ENHANCEMENT GOALS

A key issue and goal of the development program is the environmental restoration and enhancement of the floodplain. One of the campus master plan goals was to reintroduce North Creek to its natural floodplain. The concept involves relocating North Creek and increasing the environmental quality of the floodplain and wetlands, and maintaining flood storage capacity. Additional environmental goals included:

- Master Plan be recognized as a model for future restoration and enhancement projects
- Preservation of mature forest to minimize impact of the campus along hillside
- Restoration and enhancement be used as an interpretive and teaching tool
- A balance of protection and public access

D. DESCRIPTION OF THE PROPOSAL AND ALTERNATIVES

This EIS examines five alternative plans for Truly Farms-Stringtown, a multiple ownership site consisting of approximately 127 acres located within the City of Bothell. Alternative 1 is the preferred development plan (the Proposal).

ALTERNATIVE 1: RETURN NORTH CREEK TO FLOODPLAIN / 4,200 PARKING SPACES (Figure II-1)

Campus Buildings

Alternative 1 proposes approximately 1,143,800 gross square feet of campus buildings and approximately 4,200 parking spaces on the site at build-out (2010). A variation of 6,600 parking spaces is also addressed in this EIS.

The classroom and teaching/laboratory functions comprise a total of six campus buildings. The remaining uses are housed in single buildings. All campus buildings would be two to three stories in height with the exception of the library, which would be a focal point at four stories high.

Campus Form

Two formal pedestrian corridors lead directly from parking to campus buildings, in east-west and north-south directions. Campus buildings are located on these “promenades,” allowing clear building addresses in relation to other campus elements. A series of informal paths also link buildings throughout the campus, offering campus pedestrians an option to get to their destination. The location and scale of campus buildings and parking is another means of ensuring clear site orientation and wayfinding. The location of parking structures on the periphery of the site allows for a contiguous academic campus landscape unobscured by pedestrian/vehicular conflicts. Peripheral parking also transfers students, staff, faculty and visitors into a pedestrian mode as soon as they enter the site. Architecturally prominent campus buildings such as the library and student center buildings act as landmarks and assist in wayfinding on campus.
Figure II-1
Alternative 1
Return North Creek to Floodplain - 4,200 Parking Spaces

University of Washington-Bothell & Cascadia Community College EIS
The two main pedestrian corridors on campus provide safety and security. These corridors would likely be well traveled and viewed from buildings fronting onto the paths. Pedestrians also would have a choice of routes to most campus destinations. All paths would be well lighted. The clear orientation of buildings and circulation helps make the campus an approachable, welcoming and understandable collegiate atmosphere. Campus buildings are two to four stories high.

The restored lowland meadows frame the lower campus edge, and campus inhabitants can reach out into the lowland environment on boardwalks that lead from the campus to observation points in the floodplain. A wide variety of plant communities, fish and wildlife habitats and restored stream, floodplain and pond hydrologies would all be accessible for educational opportunities. The restored floodplain/wetlands allows the opportunity to create views to and from the campus by careful building location in relation to the existing mature trees and proposed landscaping.

Building siting and configuration can be reasonably adjusted to accommodate future flexibility. The relocation of North Creek allows some additional flexibility in future building location and expansion potential. Moderate expansion potential exists at a higher development cost by placing more parking under campus buildings.

Community Fit

Building placement and landscaping seek to achieve compatibility with adjacent land uses. Several significant existing structures are being retained including the Chase house and the existing Truly house. Pedestrian only access along 180th respects and helps to protect the existing historic cemetery adjacent to the site.

The boardwalks that link the campus with the lowlands are also accessible to the public. These boardwalks access a variety of riverine environments. Access is also provided to “community” facilities such as daycare, recreation, arts facilities and transit access.

Joint public and private endeavors are supported by the site’s placement within the high tech corridor, site accessibility, and the campus planning and implementation process.

Site Access

Primary site access is from SR 522 to the south, allowing direct site access from SR 522 and I-405. This new site access point involves several elements:

- New westbound SR 522 off-ramp
- New traffic signals on eastbound SR 522 at access point
- Grade separation at new access point with on- and off-ramps for westbound SR 522

The new westbound SR 522 off-ramp eliminates the need for campus traffic from westbound SR 522 to weave across I-405 traffic joining westbound SR 522.

Secondary site access is from Beardslee Boulevard to the north. This access point would require new traffic signals that would affect both directions of traffic movement on Beardslee Boulevard. The current and projected congestion at both ends of Beardslee Boulevard (i.e. at the 195th/I-405 interchange and at Beardslee/104th Avenue/Maysner/Main intersection) prevents this from being the primary site access point.
Both the primary and secondary site access points would be prominent gateways to the campus. The south site access area is designed as a park like campus setting. The north site access from Beardslee Boulevard enters through evergreen forest that ties together the hillside and the lowlands.

Parking

The main campus drive connects all the major access points. This drive is three lanes wide with the lanes splitting to form a median as necessary to preserve existing mature vegetation.

Parking on the campus totals approximately 4,200 spaces and is provided in three separate parking structures. Most of the parking is concentrated near the primary site access in the south portion of the site. This location:

- Allows most of the people arriving to park their cars and access the campus as pedestrians
- Keeps campus pedestrian friendly by preventing the majority of vehicles from driving through the campus

The main parking structure at the south entrance contains about 2,700 parking spaces in 5 to 5-1/2 levels of parking, which translates to approximately four stories in building height. This structure would step up the hillside. The rectangular parking structure just north of existing NE 180th Street contains 650 parking spaces in five levels of parking. The parking located partially under two buildings on the north side of the campus green contains 850 parking spaces in two levels of parking.

Pedestrian and Bicycle Circulation

Pedestrian and bicycle access to the campus site is greatly enhanced by the close proximity of the Sammamish River Trail and the North Creek Trail. These two major regional trails are connected via the campus site. The Sammamish River Trail connection is possible under the existing SR 522 bridge over North Creek. The North Creek Trail connection is proposed via an overpass across I-405. The regional trail runs along the toe of the campus slope with several access points to the hillside campus. The boardwalks that help connect the campus to the lowlands also connect with the regional trail.

This alternative allows pedestrian and bicycle access only from NE 180th Street due to the desire to protect the surrounding residential community and historic cemetery. NE 185th Street would provide transit and emergency vehicle access to the campus and some improvements would be required.

Pedestrian circulation on the campus is broken down into a hierarchy of formal promenades, informal pathways, and building interior circulation. The formal promenades are major axes of the campus and connect major uses and spaces. Informal pathways are more meandering and provide access to some of the more quiet spaces on campus. The interior building circulation system provides a means for barrier free access up and down the hillside by accessing building elevators. Building features such as arcades and canopies also help to shelter pedestrians from the weather.

The majority of the campus site is proposed to be designated open space. This open space consists of the restoration and enhancement of the stream and lowlands, campus open space, campus gateways, and campus perimeter buffers.
Environmental Restoration/Enhancement

The environmental restoration and enhancement calls for returning North Creek to its floodplain and associated riverine wetland system. This involves approximately 60 acres of the lowland portion of the site. North Creek would be re-meandered across the lowland through a mosaic of wetlands typically found in the Puget Sound Basin and that biologically make sense for this site. The following table summarizes the different types of proposed wetlands:

Table II-4
Proposed Wetland Communities - Alternative 1/Phase 1

<table>
<thead>
<tr>
<th>Wetland Community Type</th>
<th>Approximate Area (acres) 1989 Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evergreen Forest</td>
<td>10.4</td>
</tr>
<tr>
<td>Forested Peatland</td>
<td>10.3</td>
</tr>
<tr>
<td>Red Cedar Patches</td>
<td>1.7</td>
</tr>
<tr>
<td>Scrub/Shrub Peatland</td>
<td>6.1</td>
</tr>
<tr>
<td>Floodplain Scrub/Shrub</td>
<td>11.0</td>
</tr>
<tr>
<td>Floodplain Forest</td>
<td>12.2</td>
</tr>
<tr>
<td>Wet Meadow</td>
<td>3.7</td>
</tr>
<tr>
<td>North Creek</td>
<td>3.75</td>
</tr>
<tr>
<td>Oxbow/Rip Forest</td>
<td>1.25</td>
</tr>
<tr>
<td>Total</td>
<td>60.4</td>
</tr>
</tbody>
</table>

Campus Open Space

Campus open space includes the major stands of existing mature evergreen forest that provide the critical connection between the hillside to the lowland area. The campus green (about 3.5 acres) is an open lawn surrounded by campus buildings and mature evergreen forest. The green is the focal open space of the campus and opens out to the restored lowland environment.

The campus green is the terminus of the formal pedestrian promenade that connects key campus buildings with the service zone at the south end of the site. The promenade is approximately 70 feet wide and is a combination of softscape and hardscape with trees, seating areas, pedestrian lighting, and decorative paving. Barrier free access to many of the campus buildings and parking areas can be achieved via this promenade.

Running perpendicular to the promenade is the garden street. This pedestrian street, in the approximate location of existing NE 185th Street, is approximately 60 feet wide and is graded to provide barrier-free access to some of the lower campus buildings and a boardwalk at its terminus.
In addition to the formal pedestrian pathways of the promenade and garden street, a network of informal pathways connect campus spaces. These paths are four to six feet wide and meander through the mature forest areas and up and down the hillside.

Approximately 3.5 acres of landscape buffers provide separation between the campus and adjacent residential areas. These buffer areas run along the entire west edge of the campus and consist of landscaping and perimeter fencing in certain areas. Portions of the west campus edge that are currently dense existing evergreen forest would receive understory plantings to help screen the campus from residences.

Build-out of this alternative is projected to occur by 2010. Phase 1 is projected to occur by 1999 and includes the full environmental enhancement/stream relocation. Buildings planned for the first phase include the library and a classroom/lab building.

ALTERNATIVE 1A: RETURN NORTH CREEK TO FLOODPLAIN / 6,600 PARKING SPACES (Figure II-2)

The variation with 6,600 parking spaces on the campus site becomes more dense and urban. In addition to the 4,200 parking spaces described above, 2,400 additional parking spaces are added to the campus site. All of the additional parking spaces are contained in structures. One additional classroom building would be added to help offset the uses displaced by the additional parking. Similar to Alternative 1, approximately 80% of the total parking on the campus site is located in the southern half of the campus at build-out. The specific differences of this variation compared with Alternative 1 are shown in Figure II-2.
Figure II-2
Alternative 1a
Return North Creek to Floodplain - 6,600 Parking Spaces

University of Washington-Bothell & Cascadia Community College EIS
PHASE 1 FOR ALTERNATIVES 1 AND 1A / 1,300 SURFACE PARKING SPACES (Figure II-3)

Campus Buildings

Phase 1 is analyzed for Alternative 1 only, since it is the preferred alternative. Although Alternative 1a is not the preferred, Phase 1 applies to that alternative as well. The Pre-Design Study for Phase 1 is currently in progress. The most current Phase 1 numbers are reflected in this EIS. These numbers are expected to fluctuate in response to the Pre-Design Study.

Phase 1 proposes approximately 214,000 gross square feet of campus buildings and approximately 1,300 surface parking spaces on the site by the year 1999. The full program of environment restoration and enhancement that includes returning North Creek to its floodplain would be completed in this phase.

Table II-5
Square Footage Breakdown for Phase 1

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Approximate Gross Square Feet</th>
<th>% of Build-out Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom/Lab Building</td>
<td>45,700</td>
<td>4%</td>
</tr>
<tr>
<td>Library</td>
<td>168,300</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>214,000</td>
<td>19%</td>
</tr>
</tbody>
</table>

The library would be four to five stories in height and the classroom/lab building would be one to two stories high.

Campus Form

A portion of the north-south formal pedestrian promenade would be constructed in Phase 1. The two campus buildings would anchor each end of the promenade along with a portion of the campus green and a majority of the surface parking. Portions of the informal path system would also link parking areas with the promenade and campus buildings.

Community Fit

The surface parking in Phase 1 would be located in areas where future parking structures and/or campus buildings would be built. This enables grading in Phase 1 to begin to reflect the design of campus build-out. Landscape buffering in critical areas would also be established in Phase 1.

Site Access

Phase 1 site access would be from Beardslee Boulevard to the north. New traffic signals would be a part of this new access along Beardslee. The south access is planned for Phase 2.
Figure II-3
Phase 1 of Alternatives 1 and 1a

University of Washington-Bothell & Cascadia Community College EIS
Parking

The main access drive provides access to the parking areas in Phase 1 and all future phases. Approximately 1,300 surface parking spaces are carefully located on the hillside to avoid existing mature vegetation. These surface parking areas are placed where future buildings and/or parking structures are to be located.

Pedestrian and Bicycle Circulation

Pedestrian and bicycle access to the campus is greatly enhanced by the Phase 1 connection to the Sammamish River Trail and the North Creek Trail. Connection to the Sammamish River Trail would occur by passing under the existing SR 522 bridge over North Creek. The proposed connection to the North Creek Trail is made possible by the construction of a new overpass across I-405 from the campus.

Similar to build-out, Phase 1 allows pedestrian and bicycle only from NE 180th Street in order to protect the surrounding residential community. NE 185th would have transit access to the campus and some road widening would be required.

Environmental Restoration and Enhancement

Phase 1 includes the full program of environmental restoration and enhancement as described in Alternative 1. This includes returning North Creek to its floodplain. The floodplain restoration includes approximately 60 acres of the site. Table II-4 summarizes the different types of wetlands communities proposed for the floodplain restoration.

Campus Open Space

Phase 1 campus open space includes the major stands of existing mature evergreen forest that provide the critical connection between the hillside and the lowland area. A portion of the campus green (about two acres) would be developed in Phase 1 in front of the library and would be open lawn. The remainder of the campus green would be developed in later phases.

The main north-south pedestrian promenade would be partially developed in Phase 1 including trees, lighting and walkways. The remainder of the promenade (seating, special paving, additional landscaping) would be developed in later phases.

Major portions of the landscape buffers would be implemented in Phase 1 in order to provide an established screen for later phases.
ALTERNATIVE 2: LEAVE NORTH CREEK IN CURRENT LOCATION / 4,200 PARKING SPACES (Figure II-4)

Campus Form

Alternative 2 proposes 1,143,800 gross square feet of campus buildings and 4,200 parking spaces on the site at build-out (2010). A variation of 6,600 parking spaces is also addressed in this EIS. The type and the amount of building space is the same as for Alternative 1.

Differences from Alternative 1

- North Creek and its levees would remain in its current location
- Limited restoration of the lowland environment
- Limited variety of plant communities, fish and wildlife habitat and pond hydrologies would all be accessible for educational opportunities
- The existing location of North Creek allows less flexibility in campus building locations
- The campus green (about 3 acres) is slightly smaller
- There is slightly less preserved mature forest in this alternative due to slightly less developable area

The following table summarizes the different types of proposed wetlands:

<table>
<thead>
<tr>
<th>Wetland Community Type</th>
<th>Approximate Area (acres)</th>
<th>1989 Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evergreen Forest</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>Emergent Marsh</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>Forested Peatland</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>Mixed Deciduous Forest</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>Scrub/Shrub</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Wet Meadow</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Floodplain Forest</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>Riparian Forest</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>North Creek</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Oxboxs</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>65.4</td>
<td></td>
</tr>
</tbody>
</table>
Figure II-4

Alternative 2

Leave North Creek in Current Location - 4,200 Parking Spaces

University of Washington-Bothell & Cascadia Community College EIS
ALTERNATIVE 2A: LEAVE NORTH CREEK IN CURRENT LOCATION / 6,600 PARKING SPACES (Figure II-5)

Campus Form

The variation with 6,600 parking spaces on the campus site becomes more dense and urban. In addition to the 4,200 parking spaces described above, 2,400 additional parking spaces are added to the campus site. All of the additional parking spaces are contained in structures. One additional classroom building would be added to help offset the uses displaced by the additional parking. Similar to Alternative 1, approximately 80% of the total parking on the campus site is located in the southern half of the campus at build-out. The specific differences of this variation compared with Alternative 1 are shown in Figure II-5.

NO ACTION ALTERNATIVE (Figure II-6)

The No Action Alternative is required by SEPA regulations and serves as a baseline for the comparison of future development alternatives. This alternative is based on the continuation of existing site conditions with no campus development in the future. However, given the large site location near central Bothell and the fact that the land is mainly undeveloped, it can be expected that development would occur in the future. Past proposals for development on the site have included office parks and a shopping center.
Figure II–5
Alternative 2a
Leave North Creek in Current Location - 6,600 Parking Spaces

University of Washington-Bothell & Cascadia Community College EIS
Figure II–6
No Action Alternative

University of Washington-Bothell & Cascadia Community College EIS
E. SUMMARY OF IMPACTS, MITIGATION MEASURES, AND SIGNIFICANT UNAVOIDABLE ADVERSE IMPACTS

The following elements of the natural and built environments were analyzed in the EIS as directed by public scoping and the public review process. Impacts from the proposed action and alternatives as well as mitigation measures are summarized below. The complete analysis of impact, mitigation measures, and significant unavoidable adverse impacts can be found in Section IV.

Earth

Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a

- Significant clearing (approximately 115 acres for Alternatives 1 and 1a, approximately 109 acres for Phase 1, Alternatives 2 and 2a) excavation and filling to achieve the grades necessary for the campus plan
- Alternative 1 and 1a quantities for earthwork include over 300,000 cubic yards of excavation and less than 200,000 cubic yards of fill
- Phase 1 quantities for earthwork include about 115,000 cubic yards of excavation and about 85,000 cubic yards of fill
- Alternative 2 and 2a quantities for earthwork include over 260,000 cubic yards of excavation and less than 150,000 cubic yards of fill
- Ground water on slopes poses a construction hazard
- Subsurface soils in the floodplain would experience unacceptable amounts of settlement without mitigation measures that address foundation support
- Soils exposed during the construction process are highly vulnerable to erosion, especially those soils in erosion hazard areas
- Increased runoff from increased impervious surfaces
- Potential adverse impacts to steep slopes and landslide hazard areas during and after construction could result from clearing of vegetation, potential increases in ground water, weighting potentially unstable slopes, and removing support from slopes for foundation excavations
- All campus development located within the valley floor would be at moderate to high risk of damage caused by soil liquefaction or differential settlement of the soils during an earthquake

Mitigation Measures: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a

- Most of the campus development is located outside of the areas where compressible soils are present in the valley floor, which are also the seismic hazard areas
- Structures located in these areas would have proper foundation support and seismic consideration
- Ground water can be controlled during construction by temporary and/or permanent drains or by dewatering methods
Erosion control measures would be specifically developed to address the individual causes and sources of erosion and deposition, especially for construction hazard areas include:

- Plan development to fit the terrain
- Time grading and construction to minimize soil exposure
- Retain existing vegetation whenever feasible
- Vegetate and mulch denuded areas
- Direct runoff away from denuded areas
- Minimize length and steepness of slopes
- Keep runoff velocities low
- Prepare drainageways and outlets to handle concentrated or increased runoff

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a

No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Impacts: No Action Alternative

The No Action Alternative would not impact topography, geology, soils, or sensitive areas, earth related conditions and processes would continue as for existing conditions.

Air

Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a

- Automobiles emit more pollutants when cold from sitting, thus the evening commute period has the most potential for higher CO levels
- Gasoline and/or diesel powered machinery and equipment would generate carbon monoxide during construction phase of the master plan
- Demolition debris and excavation dust would impact air quality
- Air quality would decrease slightly due to increased vehicular traffic with carbon monoxide emission from the increased activity at the campus site

Mitigation Measures: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a

- The planned widening of 195th overpass and improvements to the ramp intersection could increase the carrying capacity of the road system
- The Transportation Management Plan (TMP) for the campus would implement a complete range of campus travel demand management measures that increase the ratio of people to vehicles and reduces the number of vehicles using the existing road system
- Potential improvements in vehicle performance achieved through the use of alternate fuels such as natural gas and electric vehicles
- Locating building air intakes away from parking lots, parking garages or busy streets
- Healthful air quality within parking structures though open wall system to ensure adequate ventilation
Construction Mitigation Measures

- Fugitive dust from earth moving:
 - Use water spray to prevent visible dust emissions
 - Prevent dust emissions during transport by covering load, or wetting down, or by ensuring adequate freeboard on trucks
 - Prompt clean-up of any spills of transported material on public roads
- Maintain thick buffers between the project site and adjacent residential neighborhoods
- Minimize the amount of excavated material which is hauled away for off-site disposal

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a, No Action Alternative

No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Water & Wetlands

Impacts: Alternatives 1, 1a, Phase 1, Alternatives 2 and 2a, No Action Alternative

- Increased impervious surface area increase surface water runoff volume and rate
- The quantity of automobile related pollutants in the runoff would increase
- Runoff would be concentrated at discharge points
- Alternatives 1a and 2a with 6,600 parking spaces would have more impervious surface and increased vehicular access to impervious surface than Alternatives 1 and 2 with 4,200 spaces
- Phase 1 proposes less total roadway than build-out but nearly the same amount parking impervious surface
- Erosion and sedimentation of site soils could occur during construction, causing suspended soil particles in surface water runoff, which then would be carried into the downstream hydrologic system, possibly degrading habitats and recreational uses of these downstream water bodies
- Alternatives 1, 1a and Phase 1 include the realignment of North creek from its present location
- Alternatives 1, 1a and Phase 1: the flow capacity of the proposed channel could cause overflowing of the creek several times per year
- Alternatives 1, 1a and Phase 1: the water would freely flow over the valley portion of the site during storms that generate flows over about 50 cfs
- Alternatives 1, 1a and Phase 1: removal of the levees would result in more sedimentation and deposition of debris in the floodplain
- Alternatives 1, 1a and Phase 1: construction of the new stream channel would require significant earth moving operations, potential exists for erosion of exposed earth, which then would be carried into the downstream hydrologic system, possibly degrading habitats and recreational uses of these downstream water bodies
• Loss of recharge area for the surficial aquifer by increasing impervious surfaces, reducing the ground water contribution to wetlands and seeps on the western slopes

• Interception of ground water in relatively permeable lenses where deeper cuts for buildings or roadways are made, reducing the ground water contribution to wetlands and seeps on the western slopes

• Alternative 1 and 1a would impact 6.8 acres of wetlands/waters according to 1987 delineation standards, and 8.5 acres of wetlands/waters according to 1989 standards to accommodate the construction of campus buildings, parking facilities and roads

• Alternative 1 and 1a would impact 17.8 acres of wetlands/waters according to 1987 delineation standards, and 24.9 acres of wetlands/waters according to 1989 standards to accommodate activities associated with the relocation of North Creek, elimination of the existing drainage network, planting of native wetland vegetation, and mass grading for restoration of the floodplain

• Alternative 2 and 2a would impact 6.1 acres of wetlands/waters according to 1987 delineation standards, and 7.6 acres of wetlands/waters according to 1989 standards to accommodate the construction of campus buildings, parking facilities and roads

• Alternative 2 and 2a would impact 17.9 acres of wetlands/waters according to 1987 delineation standards, and 22.8 acres of wetlands/waters according to 1989 standards to accommodate activities associated with elimination of the existing drainage network, planting native wetland vegetation, and mass grading for restoration of the floodplain

• Alternatives 2, 2a and the No Action Alternative do not adequately restrain the stream from overflowing its banks during certain flood events

Mitigation Measures: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a

• The proposed stormwater system would be designed to comply with the 1990 King County *Surface Water Design Manual*, as adopted and administered by the City of Bothell Public Works Department.

• Roof runoff and groundwater would be piped and discharged separately to the wetland/creek floodplain, impervious surfaces subject to vehicular use would be collected and routed through a water quality control facility before being discharged to the creek floodplain

• Both would discharge through dispersal trenches before entering the wetlands along the creek

• The water quality control facility would be designed to accommodate build out and Phase 1 conditions, and would consist of a coalescing plate oil/water separator, a wet vault, a dispersal trench and a biofiltration facility

• The water quality control facility would be designed for the annual 24-hour rainfall event, rainfall events exceeding this annual storm (less than 5%) would bypass the water quality control facility and discharge directly to the dispersion trench and biofiltration facility
• The erosion control plan would include filter fences, sedimentation ponds, check dams, and other devices that would reduce flows velocities and allow sediment to settle out of the flow before it is discharged into North Creek; erosion control facilities would be implemented at the beginning of construction and would remain in operation until erosion potential has passed. Storm detention facilities would be designed to contain runoff from the developed conditions 25 year recurrence storm event with an allowable 24-hour discharge rate equal to the 5-year 24-hour existing conditions event, unless hydraulic analysis indicates that the North Creek floodplain will not be impacted by undetained surface water runoff. Conditions of approval could be placed on the project as part of the PUD approval process.

• Fish stranded during diversion of the stream to its new channel would be carefully collected and introduced to the new stream channel in accordance with standard fish rescue procedures.

• Ground water intercepted by constructed facilities would be combined with roof drainage and piped to dispersal trenches.

• Alternative 1 and 1a would restore a total of 58 acres (1987 protocol) and 60.4 acres (1989 protocol) of complex emergent, scrub-shrub, and forested riverine wetlands, this provides a ratio of restoration area to impact area of 2.4:1 (1987 protocol) and 1.8:1 (1989 protocol).

• Restoration of natural stream channel morphology within North Creek.

• Restoration of hydrologic connections between North Creek and its adjacent floodplain.

• Restoration of emergent marsh, palustrine scrub-shrub and forested wetland vegetation within the North Creek floodplain.

• The development of a mosaic of diverse plant communities would lead to a significant increase in the fauna/habitat support functions within the proposed project area. Alternatives 1 and 1a propose the following plant communities (1989 protocol):

 - Persistent emergent wetland: 3.7 acres
 - Palustrine scrub-shrub wetland: 17.1 acres
 - Palustrine forested wetland: 34.6 acres
 - Natural meandering and structurally diverse stream channels: 5.0 acres

• Alternative 2 and 2a would restore a total of 63 acres (1987 protocol) and 65.4 acres (1989 protocol) of complex emergent, scrub-shrub, and forested wetlands, this provides a ratio of restoration area to impact area of 2.6:1 (1987 protocol) and 2.2:1 (1989 protocol).

• The development of a mosaic of diverse plant communities would lead to a significant increase in the fauna/habitat support functions within the proposed project area. Alternatives 2 and 2a propose the following plant communities (1989 protocol):

 - Persistent emergent wetland: 8.3 acres
 - Palustrine scrub-shrub wetland: 5.5 acres
 - Palustrine forested wetland: 47.8 acres
 - Existing stream channel with new oxbows: 3.8 acres

• Alternatives 2, 2a and the No Action Alternative would require periodic levee maintenance.
The Federal Clean Water Act Section 404 and attendant EPA guidelines (404(b)(1) [(40 CFR 232-233)]) define the "rebuttable presumption" that any discharge of pollutants (e.g. "fill") into "Waters of the U.S." (including wetlands) is a "significant unavoidable impact." Consistent with requirements articulated in the 404(b)(1) Guidelines, all practicable alternatives must be used to avoid discharges to waters/ wetlands. Therefore, only unavoidable adverse impacts are the subject of permit review. After avoidance, the permit applicant must minimize, then mitigate unavoidable impacts to waters, including wetlands.

The Washington State Administrative Code, WAC 197-11, requires that impacts to the natural and built environments be analyzed, along with any mitigating measures to address those impacts. Any impacts that cannot be avoided or mitigated are described as significant unavoidable adverse impacts in the EIS.

It is therefore possible that a project can call for filling waters/wetlands, propose extensive mitigation measures for impacting those wetlands, and end up with no "significant unavoidable adverse impacts" according to SEPA regulations. According to the Clean Water Act Section 404 and attendant EPA Guidelines, however, any wetland fill is a "significant unavoidable impact," no matter how it is mitigated.

According to SEPA, there are no significant unavoidable adverse impacts for this action. For the purpose of this DEIS, "significant unavoidable adverse impacts" are based on the requirements set forth in the Clean Water Act Section 404 and attendant EPA Guidelines, which exceed the SEPA requirements. The more stringent Federal requirements were applied to the alternatives in order to subject them to the highest possible threshold criteria.

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a

- Alternatives 1, 1a and Phase 1 propose filling 6.8 acres (1987 protocol) and 8.5 acres (1989 protocol) of waters/wetlands for campus construction
- Alternatives 2 and 2a propose filling 6.1 acres (1987 protocol) and 7.6 acres (1989 protocol) of waters/wetlands for campus construction
- Alternatives 1, 1a and Phase 1 propose filling 17.8 acres (1987 protocol) and 24.9 acres (1989 protocol) of waters/wetlands for historic floodplain restoration/enhancement
- Alternatives 2 and 2a propose filling 17.9 acres (1987 protocol) and 22.8 acres (1989 protocol) of waters/wetlands for historic floodplain restoration/enhancement

Significant Unavoidable Adverse Impacts: No Action Alternative

- The stream would continue to have little or no contact with its natural floodplain
- The water temperature would continue to equal or exceed the State water quality standard of 16 degrees C
- The existing levee system would require regular maintenance to keep pace with increasing urbanization upstream in the watershed
- The possibility of levee failure over time would continue at the site
Plants & Animals

Impacts: Alternatives 1, 1a, Phase 1, 2, 2a

- Development of campus would require clearing of portions of the site
- Increase in impervious surfaces reduces areas for infiltration of water into the soil profile so less water may be available to plants
- Increased traffic throughout the hillside could facilitate invasion by weedy species that could further degrade the peripheral vegetation
- Returning North Creek to its floodplain, eliminating the existing drainage network, and planting native vegetation species would mean that species not adapted to life in saturated soils likely would not persist
- Resident fish and other aquatic forms may be stranded in the existing channel when the new channel is opened
- No Action Alternative impacts include the continued use of heavy farm equipment and grazing by livestock on the floodplain

Mitigation Measures: Alternatives 1, 1a, Phase 1, 2, 2a

- Alternative 1 and 1a restoration plans would result in 58 acres (1987 protocol) and 60.4 acres (1989 protocol) of created wetlands/waters, planted with native vegetation
- Alternative 2 and 2a restoration plans would result in 63 acres (1987 protocol) and 65.4 acres (1989 protocol) of created wetlands/waters, planted with native vegetation
- Construction would be staged to avoid removal of vegetation where possible and to replant with native vegetation those areas where vegetation has been removed
- Construction equipment and activities would be limited to designated areas only
- Tree preservation and protection measures would include, but not be limited to: field staking of campus road and pathway, clustering of campus buildings, minimize impervious surfaces under drip lines of trees, retaining walls

The Federal Clean Water Act Section 404 and attendant EPA guidelines (404(b)(1) [(40 CFR 232-233)]) define the "rebuttable presumption" that any discharge of pollutants (e.g. "fill") into "Waters of the U.S." (including wetlands) is a "significant unavoidable impact." Consistent with requirements articulated in the 404(b)(1) Guidelines, all practicable alternatives must be used to avoid discharges to waters/wetlands. Therefore, only unavoidable adverse impacts are the subject of permit review. After avoidance, the permit applicant must minimize, then mitigate unavoidable impacts to waters, including wetlands.

The Washington State Administrative Code, WAC 197-11, requires that impacts to the natural and built environments be analyzed, along with any mitigating measures to address those impacts. Any impacts that cannot be avoided or mitigated are described as significant unavoidable adverse impacts in the EIS.
It is therefore possible that a project can call for filling waters/wetlands, propose extensive mitigation measures for impacting those wetlands, and end up with no “significant unavoidable adverse impacts” according to SEPA regulations. According to the Clean Water Act Section 404 and attendant EPA Guidelines, however, any wetland fill is a “significant unavoidable impact,” no matter how it is mitigated.

According to SEPA, there are no significant unavoidable adverse impacts for this action. For the purpose of this DEIS, “significant unavoidable adverse impacts” are based on the requirements set forth in the Clean Water Act Section 404 and attendant EPA Guidelines, which exceed the SEPA requirements. The more stringent Federal requirements were applied to the alternatives in order to subject them to the highest possible threshold criteria.

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a

- Alternatives 1, 1a and Phase 1 propose filling 6.8 acres (1987 protocol) and 8.5 acres (1989 protocol) of waters/wetlands for campus construction
- Alternatives 2 and 2a propose filling 6.1 acres (1987 protocol) and 7.6 acres (1989 protocol) of waters/wetlands for campus construction
- Alternatives 1, 1a and Phase 1 propose filling 17.8 acres (1987 protocol) and 24.9 acres (1989 protocol) of waters/wetlands for historic floodplain restoration-enhancement
- Alternatives 2 and 2a propose filling 17.9 acres (1987 protocol) and 22.8 acres (1989 protocol) of waters/wetlands for historic floodplain restoration-enhancement

Significant Unavoidable Adverse Impacts: No Action Alternative

- There would continue to be limited diversity of habitat within the channel

Noise

Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2, 2a

- The campus project would not be a major contributor of noise
- Existing traffic noise levels are forecast to increase unrelated to the UWB/CCC project
- The 60% (Alternatives 1 and 2) mode split would generate slightly lower noise levels than 17% (Alternatives 1a and 2a) mode split

Mitigation Measures: Alternatives 1, 1a and Alternatives 2, 2a

- The Transportation Management Plan (TMP) for the campus would implement a complete range of campus travel demand management measures that increase the ratio of people to vehicles and reduces the number of vehicles using the existing road system
- Buffering the campus from the noise source with walls, berms or dense vegetation
- Increasing the distance between source and receiver
- Slowing down vehicles speeds, reducing the number of vehicles
Designing roadway improvements which eliminate stops on uphill grades

Limit deliveries to the campus to once a day

The south access, when completed, would have less impact upon residential areas than the Beardslee Boulevard access

Set low speed limits on the campus access roads

Use acoustic barriers for noisy central air conditioning chillers and other exterior mechanical systems, when necessary

Minimize the need for backing-up of delivery trucks

Enhance existing trees along the southern and eastern boundaries of the site

Require functional mufflers on all construction machinery

Shield noisy equipment with acoustic barriers

Detour construction trucks away from noise-sensitive areas

Turn off construction equipment during long periods of non-use

Reduce truck trips by increasing load size

Minimize the use of pile driving

Schedule deliveries of materials for the daylight hours on week days

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1, Alternatives 2, 2a, No Action Alternative

No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Risk of Explosion or Hazardous Emissions

Impacts: Alternatives 1, 1a, Phase 1, and Alternatives 2, 2a

Impervious surfaces on top of peat areas could result in explosive or toxic concentrations of methane

Petroleum contamination from USTs, ASTs, a fill material pile, a parking area, and an isolated piece of farm equipment

Additional soil or groundwater contamination might be present at USTs or debris piles that have been identified but not sampled

Physical plant and lab buildings may contain or generate potentially hazardous materials

Mitigation Measures: Alternatives 1, 1a, Phase 1 and Alternatives 2, 2a

Avoid building placement in methane producing areas

Elimination of methane collection areas and/or providing ventilation where campus development occurs

Removal of all ASTs, USTs, debris piles and abandoned farm equipment
• All contaminated soils associated with the tanks or with other sources would be removed or remediated on site, as appropriate

• The use and storage of potentially hazardous materials within the site would be in accordance with applicable local, State, and Federal regulations

• A Hazardous Waste Management Program should be implemented, when necessary, in the future course of campus operations to ensure compliance with applicable requirements

• Proposed research facilities would be designed to minimize risk and provide protection

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1, Alternatives 2, 2a, No Action Alternative

There would be no significant unavoidable adverse impacts.

Land and Shoreline Use

Impacts: Alternatives 1, 1a, Phase 1, Alternatives 2, 2a, No Action Alternative

• The development density of the site would be increased by 1,143,800 gsf of proposed development

• Alternative 1 proposes approximately 102 acres as open space

• Phase 1 proposes approximately 110 acres of the site as open space

• Sensitive properties adjacent to the campus would be affected by the development

Mitigation Measures: Alternatives 1, 1a, Phase 1 and Alternatives 2, 2a, No Action Alternative

• Portions of the campus would be fully available to the public, including the proposed regional trail link, whereas now the property is entirely privately owned

• Buffers of mature trees would be preserved at the property boundaries adjacent to residences and other sensitive properties

• Overall, proposed landscape architecture and campus development would greatly enhance the character of the site, creating a community amenity

• Conditions of approval could be placed on the project as part of the PUD approval to ensure that buffering and landscape treatment are implemented over the long-term of campus development

• A campus subarea planning effort should be initiated by the City of Bothell to evaluate land uses surrounding the campus and to recommend approximate long range planning changes

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1, Alternatives 2, 2a, No Action Alternative

• The proposed campus development would alter and intensify the use of the collection of existing properties that comprise the site, however, this would not be a significant impact
Significant Unavoidable Adverse Impacts: No Action Alternative

No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Relationship to Existing Plans and Policies

Alternatives 1 and 1a, Phase 1, and Alternatives 2 and 2a are consistent with applicable plans and policies.

Population and Housing

Impacts: Alternatives 1, 1a, Phase 1, Alternatives 2, 2a

- Current resident population on the campus site (less than 25 people, 7 houses) would be displaced by the campus development; the Chase house and the Truly residence would be preserved, but not reused as residences.
- Approximately 20,000 people are estimated to use the campus each week.
- Approximately 14,000 people would come to the campus on peak weekdays, peak accumulation on campus is estimated to be approximately 7,380 during the day and 4,440 during the evening.
- Based on recent experience at the existing University of Washington-Bothell campus, no secondary land use impacts on housing are anticipated. Students do not appear to be relocating near the campus; in fact, they are widely dispersed throughout the UWB service area.

Mitigation Measures: Alternatives 1, 1a, Phase 1, Alternatives 2, 2a

- Fair compensation would be provided to acquire the existing homes on the campus site. Relocation assistance, as allowed by law, would be provided

Significant Unavoidable Adverse Impacts: No Action Alternative

No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Light, Glare and Shadows

Impacts: Alternatives 1, 1a, Phase 1, Alternatives 2, 2a

- Increase in the amount of nighttime lighting and glare would be produced by the proposed campus development
- A portion of the cemetery west of the site would be in shadow during early morning hours especially during winter months
- Light and glare would be slightly greater than build-out since Phase 1 parking is all surface lots

Mitigation Measures: Alternatives 1, 1a, Phase 1 and Alternatives 2, 2a

- Retention of evergreen forest to reduce light spillage and glare
- Utilize shielded light sources and landscape buffering to direct light
• Retain and enhance forest edge along property lines with understory planting
• Use non-reflective building materials to reduce glare
• Design campus buildings to reduce shadows
• Campus open spaces and corridors should be planted with deciduous trees and maximize sun exposure to minimize potential ice build up during winter months

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2, 2a, No Action Alternative

No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Aesthetic/Scenic Resources

Impacts: Alternatives 1, 1a, Phase 1, Alternatives 2, 2a

• Campus buildings situated along the hillside ranging from 2 to 5 stories in height
• Buildings materials would include architectural CMU, brick, and precast concrete trim
• North Creek would meander across floodplain
• Mosaic of different wetland types would cover entire floodplain
• No measurable difference from Alternative 1 would occur other than a slight rearrangement of the campus buildings near the library

Impacts: Phase 1 for Alternatives 1 and 1a / 1,300 Parking Spaces

• Phase 1 campus buildings (classroom/lab building and the library) would be situated along the top of the hill integrated within the existing stand of evergreen trees
• Building materials and scale would be similar to Alternative 1 at build-out
• Wetland restoration of the floodplain as described in Alternative 1

Mitigation Measures: Alternatives 1, 1a and Alternatives 2, 2a

• Preservation of groups and bands of mature trees in the upland portion of the site
• Enhanced landscaping along property edges would further screen campus from adjacent properties and buffer campus from I-405 and SR 522
• Restoration and enhancement of North Creek and its floodplain would greatly improve the diversity of scenery of the area on and off-site, providing a positive and welcoming “gateway” to the City of Bothell

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2, 2a, No Action Alternative

No significant unavoidable adverse impacts are anticipated with any of the alternatives.
Historic and Cultural Resources

Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2, 2a

- Build out for all alternatives would remove all existing structures on site except for the Dr. Chase house and the Truly house
- The development of the campus buildings on the hillside and the reconfiguring of the North Creek channel may disturb or destroy potential National Register-eligible archaeological sites
- No Action Alternative impacts involve future development proposals that would likely show less sensitivity toward cultural resources than the proposed campus

Mitigation Measures: Alternatives 1, 1a, Phase 1 and Alternatives 2, 2a

- Preservation and enhancement of Dr. Chase house and the Truly house, and incorporation into the campus through adaptive re-use
- Commemorative/interpretive information on-site that describes the site history

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1, and Alternatives 2, 2a, No Action Alternative

No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Agricultural Crops

Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2, 2a

All alternatives would eliminate livestock and cropping operations on the “Truly Farm” portion of the campus site.

Mitigation Measures: Alternatives 1, 1a and Alternatives 2, 2a

There would be no mitigation measures to compensate for impacts to cropping and livestock operations.

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a and Alternatives 2, 2a, No Action Alternative

No significant unavoidable adverse impacts are anticipated with any of the alternatives.

Transportation

Impacts: Alternatives 1, 1a, 2, 2a

- Traffic volumes on the main campus drive would be significant between the south parking areas and SR 522 and between the north parking areas and Beardslee Boulevard
- All local bus routes serving the Bothell area would divert through the campus
- 60% of the people coming to campus would arrive via transit or carpool
Construction activities would generate traffic

SR 522/SR 527/Main Street intersection: forecast traffic volumes would be significantly over capacity, campus traffic would increase critical volume by about 6%

Beardslee Boulevard/Main Street/Kaysner Way/104th Avenue intersection: the addition of campus traffic would exceed capacity of four-way stop

I-405/195th Street interchange: campus traffic would significantly exacerbate peak hour congestion

Westbound SR 522 on-ramp from I-405 degraded to LOS “F” by heavy campus-bound traffic

Impacts: Phase 1

Traffic volumes on the main campus drive through the heart of the campus may be higher than at build-out

Construction activities would generate traffic

SR 522/SR 527/Main Street intersection: forecast traffic volumes would be nearing capacity, campus traffic would increase critical volume by less than 2%

Beardslee Boulevard/Main Street/Kaysner Way/104th Avenue intersection: the existing four-way stop would continue to provide adequate capacity for forecast local and campus traffic

I-405/195th Street interchange: arterial improvements would allow the interchange to easily accommodate campus-generated traffic

Mitigation Measures: Alternatives 1, 1a, Phase 1, Alternative 2, 2a

It is estimated that approximately three-fourths of 9,650 students, faculty, staff and visitors coming to the campus on a typical day would be there at one time (approximately 7,400 individuals). Alternatives 1 and 2 utilize the adopted campus transportation demand management goal of 60% transit/HOV (15% transit, 45% HOV), yielding a daytime parking demand of 4,200 spaces. This means that 60% of the people coming to the campus (at build-out on peak weekdays) would arrive via transit or carpool.

Alternatives 1a and 2a utilize typical peak hour suburban transit and carpooling rates of 17% transit/HOV (2% on transit, 15% HOV), yielding a daytime parking demand of 6,600 spaces. This means that 17% of the people coming to the campus (at build-out on peak weekdays) would arrive via transit or carpool.

The evening parking demand for all alternatives assumes typical peak hour suburban transit and carpooling rates to reach an estimated demand of 4,200 spaces. Therefore, if the transportation demand management goal can be achieved, parking provided to meet the evening demand will also be sufficient to meet daytime demand.
One of the major benefits of phasing the campus development is the ability to adjust future construction phases to accommodate needs as they evolve. The campus development will be time-phased depending on availability of State construction funding, with Phase 1 scheduled for construction in the 1998-1999 time frame. Build out of the campus is not anticipated before the year 2010, and in fact may occur in a much longer time frame. Part of the campus transportation demand management program would include monitoring of transit and carpooling rates. The results of the monitoring will help determine the amount of parking needed on campus for future phases. The campus, at build out, has the ability to accommodate from 4,200 to 6,600 parking spaces on-site. If monitoring shows that the transportation demand management goal of 60% transit/HOV is not being met, both Alternatives 1 and 2 have the ability to expand on-site parking in future phases if needed.

- **Achievement of the 60% transit/carpool mode split goal would dramatically reduce campus-generated traffic**

- **Travel Demand Management:**
 - Transit fare and vanpool subsidies
 - Transit service increases
 - Evening and midday shuttle service to downtown Bothell and surrounding neighborhoods and business areas
 - Priority parking and reduced parking fees for carpools and vanpools
 - Ridematch program
 - Program monitoring/evaluation
 - Information/marketing program

- **Parking management:**
 - All campus parking should be accommodated on campus
 - Parking restrictions and/or a residential parking zone around the campus in order to prevent campus-related parking on neighborhood streets

- **Roadway improvements:**
 - Campus south access/eastbound SR 522 interchange-two left turn lanes from campus to eastbound SR 522, add third eastbound SR 522 through lane to reduce intersection from “nearing capacity” to “under capacity”
 - Beardslee Boulevard/Main Street/Kaysner Way/104th Avenue intersection-traffic signal should be installed after Phase 1
 - I-405/195th Street interchange-add second eastbound through lane on 195th Street through interchange, add third lane to southbound off-ramp for separate right turn lane, and add third lane to northbound off-ramp for separate left turn lane

- Construction truck traffic on surrounding streets would be limited to work hours starting no earlier than 7:00 a.m. and no later than 7:00 p.m., adequate signing and flaggers for traffic control and safety, and by sweeping the local truck haul routes regularly to avoid spreading of mud and dust in neighborhood

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1, Alternatives 2, 2a

No significant unavoidable adverse impacts are anticipated with any of the alternatives.
Public Services and Facilities

Impacts: Alternative 1, Phase 1 and Alternative 2

- Increased demand for fire and emergency services, and police protection

Mitigation Measures: Alternative 1, Phase 1, and Alternative 2

- All campus buildings would be designed and constructed in accordance with applicable building and fire (life safety) codes and would include the following measures:
 - Adequate fire flow design for each building
 - Adequate quantity and location of hydrants
 - Adequate separation between buildings
 - Appropriately located fire lanes, striping and signage for emergency vehicle use
 - Adequate access to parking structures
 - Adequate turning radii to accommodate large trucks
 - Overhead clearance and deck strength to accommodate all types of fire-fighting equipment
 - Interior sprinkler systems, fire/smoke detection devices and alarms
 - 15-foot flat areas around buildings for ground ladder access
 - A preemption device at 180th Street, which would normally be closed to vehicular traffic
 - Roadway improvements to 185th Street

- Confined spaces (such as tunnel or vaults) would require special attention from and coordination with the Fire Department to ensure that rescue requirements are met

- The Bothell Fire Department would be notified of any proposed temporary street blockages during construction of campus facilities

- In an Interlocal Agreement between the HECB and the City of Bothell, UWB/CCC would negotiate in good faith with the City for funding of fire and emergency medical services provided by the City

- Design facilities so that structures, lighting, circulation and landscaping serve to maintain safety, prevent crime and to aid patrol, including:
 - Provision of adequate lighting and clear lines of sight
 - Use of transparent security screening rather than opaque walls
 - Design to avoid creating hiding places for criminal activity or increased crime risk
 - Use of security systems where appropriate on campus
 - Provide non-commissioned patrol by foot, bicycle or car, and increasing the number of security personnel with subsequent phases of campus development and any crime rate increases
 - Offer personal safety awareness programs
 - Provide escort services for students, faculty and staff
 - Promote community involvement in campus activities and programs

Significant Unavoidable Adverse Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a,
No Action Alternative

No significant unavoidable adverse impacts are anticipated with any of the alternatives.
Utilities

Impacts: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a

• Impacts on the water service system, for Alternatives 1, 1a, 2, and 2a, would consist of an increase in water demand of 304,500 gallons per day

• Phase 1 impact on the water system would consist of an increase in water demand of 58,200 gallons per day

• Sanitary sewer flows for the site would be about 182,700 gallons per day for Alternatives 1, 1a, 2, 2a

• Sanitary sewer flows for the site would be about 35,000 gallons per day for Phase 1

• Alternatives 1, 1a, 2 and 2a are estimated to consume a peak level of approximately 8.5 megawatts (8,578 kw) of electricity for interior and exterior lighting, air cooling systems, and other facilities

• Alternatives 1, 1a, 2 and 2a are estimated to consume approximately 15,230 to 22,850 cubic feet per hour (or 133 to 200 million cubic feet per year) in natural gas usage, assuming that gas would be used for space and water heating through decentralized systems in each building

• A section of existing 2-inch main on both 104th Avenue NE and Bothell-Hollywood Road would need to be replaced with 4-inch main to alleviate the existing “bottleneck” and adequately serve the campus

• Phase 1 is estimated to consume 1.6 megawatts (1,605 kw) of electricity at peak demand

• Phase 1 is estimated to use 2,850 to 4,275 cubic feet of natural gas per hour (24 to 27 millions cubic feet per year) assuming that gas would be used for space and water heating through decentralized systems in each building

Mitigation Measures: Alternatives 1, 1a, Phase 1 and Alternatives 2 and 2a

• The City of Bothell has stated that there is adequate water supply to meet the proposed campus build-out water demand

• The proposed campus sanitary sewer system would be two separate systems: one would connect to the Metro trunkline, the second would connect to the existing City of Bothell 20-inch main at the south end of the project site

• Both sanitary sewer lines have adequate capacity for the proposed flows

• Energy use targets established by the Washington State Energy Office would be considered in the next stage of project design and in completion of the Energy Life Cycle Cost Analysis for the campus

• Buildings and facilities would be designed in accordance with all applicable energy code requirements

• Energy efficient systems and equipment would be used during campus construction and operations to the maximum extent possible
• Replacement of the 2-inch section of gas main in 104th Avenue NE would benefit the community by improving existing distribution capabilities

• According to the Interlocal Development Agreement between the HECB and the City of Bothell, the UWB/CCC would agree to pay all applicable permit fees, facility charges and deposits, and other sums as required by Ordinances of the City of Bothell related to building code and other construction related permits or utility hook-ups

F. BENEFITS AND DISADVANTAGES OF DELAYING ACTION

There are disadvantages of delaying action on the proposed campus development. They include: failing to act on the projected unmet needs for access to higher education, including lower and upper division, and graduate level education to area residents; continuation of a gradual decline in the environmental quality of the floodplain area due to farming activities such as ditch maintenance and restricting North Creek within a levee system; and potential for other types of development to occur at site that could develop in sensitive areas by clearing more trees and filling in the floodplain. Benefits of delaying action may include: preservation of existing wetlands in an “as is” condition with no proposed wetland fill/mitigation; and the absence of construction impacts in the near-term to the surrounding area.
A. ERRATA/REVISIONS

Correction of errors and changes based on new information and analysis are required as part of this Final EIS. The following table lists the pages of the separate, previously published Draft EIS document that are changed and highlights the specific change. Section III in the DEIS is reprinted as Section II in this document. All references to tables and figures (in Section II of this document) have been changed to reflect this.

<table>
<thead>
<tr>
<th>Draft EIS Page No.</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fact Sheet iv</td>
<td>Under SDAG members remove Brent Russel and add Mike Bergmen, Metro. At Date/Place of Public Hearing insert “on DEIS”</td>
</tr>
<tr>
<td></td>
<td>I-5</td>
</tr>
<tr>
<td>III-10</td>
<td>2nd paragraph, 1st sentence under Pedestrian and Bicycle Circulation should be changed to read: This alternative allows pedestrian and bicycle access only from NE 180th Street due to the desire to protect the surrounding residential community and historic cemetery.</td>
</tr>
<tr>
<td>III-24</td>
<td>4th bullet under Water & Wetlands should be changed to read: Alternatives 1a and 2a with 6,600 parking spaces would have more impervious surface and increased vehicular access to impervious surface than Alternatives 1 and 2 with 4,200 parking spaces.</td>
</tr>
<tr>
<td>III-25</td>
<td>1st bullet under Mitigation Measures should be changed to read: The proposed stormwater system would be designed to comply with the 1990 King County Surface Water Design Manual, as adopted and administered by the City of Bothell Public Works Department. Last bullet under Mitigation Measures, 3rd line: Replace “discharges” with discharged. Last bullet under Mitigation Measures add the following paragraph: Storm detention facilities would be designed to contain runoff from the developed conditions 25 year recurrence storm event with an allowable 24-hour discharge rate equal to the 5-year 24-hour existing conditions event, unless hydraulic analysis indicates that the North Creek floodplain will not be impacted by undetained surface water runoff. Conditions of approval could be placed on the project as part of the PUD approval process.</td>
</tr>
<tr>
<td>III-26</td>
<td>3rd bullet last line replace “are” with area. 8th bullet, end of middle of line replace “are to” with area to.</td>
</tr>
</tbody>
</table>
Change

Under Plants & Animals, 2nd bullet, last line, last word change “plant” to plants.

Under Noise, Mitigation Measures, 6th bullet should be changed to read: Limit deliveries to the campus to once a day.

Under Risk of Explosion, Mitigation Measures, 2nd bullet point should be changed to read: Elimination of methane collection areas and/or providing ventilation where campus development occurs.

First bullet under Population and Housing, Impacts should be changed to read: Current resident population on the campus site (less than 25 people, 7 houses) would be displaced by the campus development: the Chase House and the Truly residence would be preserved, but not reused as residences.

1st paragraph, 2nd sentence is changed to read: This region can be characterized as having a marine climate dominated by cool, moist winds coming off the ocean.

Add this sentence to 7th paragraph, between the 2 sentence: The site is wholly contained within a sub-basin of the North Creek basin. Sub-basin boundaries are important because of critical area ordinance requirements that wetland mitigation replacement occur with the same sub-basin as the alteration.

9th paragraph, 3rd sentence should be changed to read: The channel slope varies within the site; the first 750 feet slopes approximately 0.34%.

3rd paragraph, 5th sentence under Hydrology should be changed to read: Runoff entering the site flows into a series of ditches and is discharged directly into North Creek or an offsite ditch that parallels the east property boundary.

5th paragraph, next to last line should be changed to read: The issue of the hydrologic environment is discussed in more detail in other sections of the DEIS.

1st paragraph, 4th sentence change to read: The acreage of fill in the waters/wetlands due to campus construction is the same for Alternative 1 with 4,200 parking spaces and Alternative 1a with 6,600 parking spaces.

4th paragraph, 4th sentence changed to read: An increase of 15.6 acres of impervious surface, combined with the removal of existing wetland vegetation, could significantly increase runoff, decrease overall water residence time, and compromise biogeochemical/water quality functions.

1st paragraph should be changed to read: Alternatives 2 and 2a do not relocate the creek channel and flooding characteristics would be essentially unchanged from current conditions.

Add to end of last paragraph: The proposed storm drainage facilities will adhere to the following storm drainage requirements: The 1990 King County Surface Water Manual, Department of Ecology requirements, and Department of Fisheries requirements.
2nd paragraph, 3rd sentence should be changed to read: While sockeye salmon (*O. nerka*) are also listed, and these are probably kokanee, the non-anadromous form of sockeye salmon.

2nd paragraph, next to last sentence should be changed to read: Alterations in channel morphology would increase its function as support of invertebrate, herptile, and fish populations. Furthermore, the reconfigured channel would increase fish spawning and rearing areas, particularly rearing and refuge areas.

Last paragraph, 1st sentence has been changed to read: Predictions of sound levels for the years 1999 (Phase I) and 2010 (Build-Out), with and without the project, were modeled using the FHWA model, STAMINA 2.

1st paragraph, 1st sentence should be changed to read: The UWB/CCC campus site is commonly referred to as the Truly Farms-Stringtown, . . .

Table IV-21, 1st line item should be changed to read Truly Farms Homestead

2nd paragraph, last line should be changed to: NE 185th Street provides direct pedestrian, bicycle and transit from the campus site to the downtown area.

4th paragraph, 2nd sentence, midpoint should be changed to read: ...located within its 100-year floodplain.

2nd paragraph, 1st sentence should be changed to read: ...institutional/educational, open space, and . . .

Last paragraph, 2nd sentence should be changed to read: ...Phase 1, two new buildings. . .

2nd paragraph, 1st sentence should be changed to read: ...Upon completion of all required. . .

1st bullet point, 3rd line changed to read: travel time from the Bothell/Woodinville area.

1st paragraph, 2nd & 3rd sentences should be changed to read: Table IV-24 summarizes the proposed land uses of Alternative 2. The amount of open space is slightly greater than Alternative 1 (104 acres vs. 102 acres).

3rd paragraph, 2nd sentence change word “relationship” to requirements

5th paragraph, add following paragraph after 1st sentence: However, section 17.25 of the Bothell Municipal Code, remains in effect until the zoning code is rewritten to implement the new Comprehensive Plan and must also be considered. Certain differences may need to be resolved through a code interpretation process.
3rd bullet point should be changed to read: Encouraging heavy landscaping along...

2nd paragraph, 2nd sentence should be changed to read: The campus design, particularly Alternative 1, incorporates...

1st paragraph, 2nd sentence, eliminate the word “historic places”

Insert following text after 2nd paragraph under State Growth Management Act:
Engrossed Substitute House Bill 1724 (ESHB 1724) was enacted to improve environmental review and permitting processes. The bill integrates substantive and procedural requirements of three environmental and land use laws:

- The State Environmental Policy Act (SEPA)
- The Growth Management Act (GMA), and
- The State Shoreline Management Act (SSMA)

The new law increases local government’s ability to rely on adopted comprehensive plans and zoning when processing permit applications and to decrease individual project environmental reviews. Certain types of projects that are consistent with comprehensive plans do not need additional environmental review. The new law also reduces permit processing timeframes by consolidating environmental reviews and permitting reviews to avoid duplicative steps. The Department of Ecology’s lengthy and complex rulemaking process related to local government amendments to their Shoreline Master Plans was eliminated by the new law. Other changes include provisions for legal fees, a process for judicial approval, and a study comparison to evaluate efforts of ESHB 1724. The key change of the new law is to improve governmental efficiency and integrate environmental and land use planning processes.

Figure IV-34 is revised

1st bullet should be changed to read: I-405 Multi-Modal Corridor Study.

3rd bullet should be changed to read: I-405 HOV Lanes Project, Bothell-Swamp Creek, adds an HOV lane to the I-405 northbound and southbound roadways between SR-522 and I-5. The improvements will be built in two stages: the improvements between SR-522 and SR-527 will be built in the first stage, and the improvements between SR-527 and I-5 will be built in the second. In addition to the HOV lanes, the project also includes the construction of a northbound collector-distributor roadway from SR-522 through the 195th Street Interchange. Because the NE 195th Street Interchange Improvements do not provide adequate capacity for forecasted future traffic volumes, an as-yet unfunded set of improvements were included in the I-405 HOV Lanes Project. These improvements include a westbound-to-southbound loop on-ramp from NE 195th Street and a southbound collector-distributor roadway through the 195th Street Interchange.

4th bullet, last line should be changed to read...north to NE 186th Street. This project is a proposed project for the State's 1997-99 Biennium.

5th bullet, should be changed to read: SR-527 Route Development Plan (SR-522 - I-405): Two lanes, a center turn lane and a sidewalk on each side would be located on SR-527 between the existing five-lane section, etc. in the vicinity of 228th Street SE to the intersection with SR-522 according to the WSDOT SR-527 RDP. Class II [American Association of State Highway and Transportation Officials (AASHTO) Standards] bicycle lanes (one on each side) would be provided to connect to the existing Class II lanes in the vicinity of 228th Street SE to the intersection of Reder Way in Bothell.

5th paragraph should be changed to read: I-405 Corridor HOV Access Study will identify new ramps or freeway bus transit stations in the I-405 Corridor needed to provide access to an inside (median side) HOV lane. The alternatives analysis phase of the study is complete, and none of the conceptual alternatives under consideration in the CCC/UWB Campus vicinity were selected for further analysis and development. All indented bullets under this 5th paragraph are to be deleted.

Last bullet should be changed to read: SR 522 Corridor Analysis identified alternatives for improving transit and other HOV travel in the SR 522 Corridor. A final recommendations report and conceptual drawings were published in May, 1995. Recommended improvements were focused mainly on the sections of SR 522 west of SR 527.

Last paragraph, 3rd line toward to end, add “TH” after residing.

Under Natural Environment: Delete Energy and Natural Resources.
B. **NEW INFORMATION**

CULTURAL RESOURCES

Historical Research Associates, Inc. (HRA) performed a cultural resources assessment of the Project Area. The purpose of the assessment is to locate any significant prehistoric or historic archaeological sites in the area that might be impacted by construction, to evaluate the historic buildings and structures in terms of their eligibility for listing in the National Register of Historic Places (NRHP), and to recommend measures to mitigate adverse effects on such cultural resources in the Project Area. HRA produced two reports: one to document the prehistoric, ethnohistoric, and historic archaeological resources assessment (Stutzman 1995); and another to discuss the assessment of the historical buildings and structures at the Truly Farms-Stringtown site (Warner 1995). Copies of these reports are included in the appendix.

Archaeological Resources

Before conducting the archaeological survey, HRA personnel examined King County archaeological survey and site records on file at the Washington State Office of Archaeology and Historic Preservation (OAHP) and reviewed pertinent archaeological, ethnohistorical, and historical literature available at the Special Collections Library at the University of Washington, National Archives Paget Sound Region, King County Landmarks Preservation Board, City of Bothell Community Planning Department, Bothell Historical Society, and Bothell Public Library.

HRA staff surveyed the Project Area in July, 1995. The crew inventoried the upland portions of the study area by pedestrian survey using a 30-m transect interval. Where less than 50 percent of the surface was visible, the archaeologists cleared 1-m² exposures every 50 meters using a flat-bladed shovel. Within the North Creek floodplain, the crew used 10-cm-diameter manual augers to examine the subsurface for buried cultural deposits.

HRA did not survey an approximately five-acre segment of the Project Area that was cultivated just prior to the field investigation. This segment is located in the northern half of the Project Area, in the western half of the North Creek floodplain, and is bisected by a gravel road easement.

As a result of the archaeological survey, HRA identified no significant prehistoric or historic archaeological materials. HRA recommends no other archaeological resources studies at the proposed University of Washington, Bothell Branch and Cascadia Community College Campus Collocation site.
Historical Resources

The historical resource work used background research, oral history, and field survey to inventory nineteen buildings and one structure at the site. The Dr. Reuben Chase House is listed in the National Register of Historic Places. HRA believes that several buildings and one structure of what is now the Truly Farm are eligible for listing in the National Register as an historical district. The potentially-eligible Boone Farm Historic District consists of the Main House, Wash House, Garage, Root Cellar, Hay Barn, Machine Shop, Horse Barn, Hired-hand House, and Cattle Pens. The District is significant for its long-term history in the agricultural land use of the Bothell area. The eligibility of the Bothell Cemetery will be determined in an upcoming meeting of the State Advisory Council on Historic Preservation.

Construction of the Project will adversely affect the Boone Farm Historic District, although Project plans call for the preservation of its most important element, the Main House and perhaps also the Wash House and Garage. Preservation in place, adaptive reuse, and moving elements of the Historic District appear to be infeasible. Adverse effects to the Historic District may be mitigated by documenting it, curating this information, and using it in an interpretive center located on site in one of the historic buildings. Project construction and operation, as currently planned, apparently will not adversely affect the Dr. Reuben Chase House.
SUPPLEMENTAL TRAFFIC ANALYSIS

This supplementary traffic analysis has been prepared in response to the following comments on the DEIS:

- City of Bothell Comment #75 regarding inadequacy of the DEIS traffic analysis for use in determining City of Bothell Resolution No. 774 mitigation requirements.
- City of Bothell Comment #79 regarding inadequacy of the DEIS traffic analysis for use in determining fair share contribution to City of Bothell arterial system capital improvements.
- Snohomish County Comment #4 regarding inadequacy of the DEIS traffic analysis for use in determining Snohomish County Code Title 26B mitigation requirements.

Traffic Forecasts

The traffic forecasts for the various DEIS alternatives were prepared using the City of Bothell’s traffic forecasting model, which incorporates the land use, travel demand, and road networks included in the Snohomish County model and King County’s Northshore model. As a result, traffic forecasts were prepared for the entire freeway/arterial system in the City of Bothell, South Snohomish County, and North King County. The intersections and roadway segments for which capacity and level of service analyses were prepared and incorporated in the DEIS were not selected based on geographical proximity to the campus; rather they were selected based on the extent to which they were used by campus traffic, as determined by a review of the areawide traffic forecasts. The forecasts indicated that the vast majority of campus traffic arrives and departs on regional highway facilities: I-405 and SR-522 in particular, and to a lesser extent, SR-527. Due to the dispersed origin-destination patterns of these trips and the intensive use of the freeway system, forecasted campus-related traffic volumes on arterials and interchanges beyond the immediate campus vicinity were found to be limited both proportionally and absolute terms. The forecasts also indicated that at several locations the introduction of campus traffic encouraged other traffic to shift to other more appropriate routes. As a result, the forecasted traffic volume increases on campus access routes are significantly less than the campus traffic volumes on those routes (see DEIS Figures IV-41, IV-43, and IV-45).

Trip Distribution (see DEIS pages IV-149 and IV-151)

The traffic forecasts on which the traffic analysis was based were themselves based on a geographical distribution of campus-generated traffic. This “trip distribution” process identified the origins and destinations of the trips to/from the campus. Trip distribution was based on the following characteristics of campus-generated travel:

- CCC and UWB students all will live within 30 minutes travel time of campus; in addition, CCC students will live closer to CCC than to Edmonds, Shoreline, or Bellevue Community Colleges.
- The geographical distribution of job locations of the 75% of CCC and UWB evening students traveling to the campus from work will be similar to the job locations of the general population residing the “service areas” described above (i.e., residential areas within 30 minutes travel time of campus).
• The geographical distribution of home locations of CCC and UWB faculty, staff, and visitors will be similar to the distribution of home locations of people working in the central Bothell/North Creek Valley area.

Figure II-1 of Appendix E.9 illustrates the general geographical distribution of campus traffic (it does not show the specific streets used by campus traffic). Specific campus-related traffic volumes for the various alternatives are compiled in DEIS Figures IV-41, IV-43, and IV-451, and Figures III-2, III-4, and III-5 of Appendix E.9. Person-trip and traffic generation information is compiled in Tables II-1, II-2, II-3, and II-4 and Attachment B of Appendix E.9.

Traffic Analysis Outside DEIS Study Area

The area within which campus traffic impacts were determined to be significant -- and for which detailed traffic information was published in the DEIS -- has been called the “DEIS study area.” Campus-generated traffic volumes on arterials outside of this DEIS study area are shown in the following figures. Intersection volumes are compiled in the following table.

As shown in the table and figures, campus-generated traffic is a very small proportion of overall traffic volumes outside of the DEIS study area. (In fact, the campus proportion of total traffic is significantly less than the range of accuracy of the traffic forecasts.) It also should be noted that outside the DEIS study area, little of the campus traffic is “new” traffic; i.e. most of the trips to/from the campus are being made by people who live, work, or attend school in the area, and who would be driving on area arterials whether or not the new campus is developed.

Outside of the DEIS study area, the limited volumes of campus-generated traffic cannot and do not by themselves require mitigation. There are, however, significant arterial system improvement needs in the City of Bothell and South Snohomish County that will be created by the traffic generated by population and employment growth throughout the area. The overall program of arterial system improvements implemented by the City, County, and State will easily accommodate campus-related traffic to the extent that overall traffic is accommodated on the system and on the arterials used by campus traffic.
Intersection Entering Volumes
2015 p.m. Peak Hour

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Total Entering Volume</th>
<th>Campus-Related Entering Volume (x%) = % of Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X) = Intersection # (refer to figures)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208th Street/9th Avenue (1)</td>
<td>1,600</td>
<td>30 (1%)</td>
</tr>
<tr>
<td>208th Street/SR-527* (2)</td>
<td>5,350</td>
<td>190 (4%)</td>
</tr>
<tr>
<td>208th Street/39th Avenue (3)</td>
<td>2,300</td>
<td>90 (4%)</td>
</tr>
<tr>
<td>228th Street/527* (4)</td>
<td>1,850</td>
<td>70 (4%)</td>
</tr>
<tr>
<td>228th Street/9th Avenue (5)</td>
<td>2,850</td>
<td>120 (4%)</td>
</tr>
<tr>
<td>228th Street/SR 527* (6)</td>
<td>5,300</td>
<td>130 (2%)</td>
</tr>
<tr>
<td>228th Street/39th Avenue (7)</td>
<td>1,900</td>
<td>100 (5%)</td>
</tr>
<tr>
<td>240th Street/Meridian Avenue (8)</td>
<td>1,050</td>
<td>30 (3%)</td>
</tr>
<tr>
<td>240th Street/SR 527* (9)</td>
<td>2,400</td>
<td>90 (4%)</td>
</tr>
<tr>
<td>195th Street/120th Avenue (10)</td>
<td>1,800</td>
<td>120 (7%)</td>
</tr>
<tr>
<td>195th Street/North Creek Parkway (11)</td>
<td>4,100</td>
<td>270 (7%)</td>
</tr>
<tr>
<td>180th Street/SR 522* (12)</td>
<td>4,100</td>
<td>330 (8%)</td>
</tr>
<tr>
<td>80th Avenue/SR 522* (13)</td>
<td>4,500</td>
<td>320 (7%)</td>
</tr>
<tr>
<td>Maltby Road/SR 9 (14)</td>
<td>2,400</td>
<td>70 (3%)</td>
</tr>
<tr>
<td>228th Street/SR 9 (15)</td>
<td>2,100</td>
<td>70 (3%)</td>
</tr>
<tr>
<td>SR 9/SR 522 Ramps (16)</td>
<td>1,700</td>
<td>70 (4%)</td>
</tr>
<tr>
<td>Paradise Lake Road/SR 522 (17)</td>
<td>3,350</td>
<td>120 (4%)</td>
</tr>
</tbody>
</table>

* Intersection will operate at LOS E or F in 2013 under Bothell Comprehensive Plan (Source: Bothell Comprehensive Plan, Transportation Element, page TR-14).

b Campus-related volume includes 140 vehicles coming from North Creek Parkway businesses; this traffic would travel through the 195th Street/North Creek Parkway intersection with or without the campus.
Campus Traffic Impacts on Bothell CIP Projects

♦ 120th Avenue Extension

(The 120th Avenue Extension will connect existing 120th Avenue south of 195th Street to existing 180th Street west of 132nd Avenue.) The traffic forecasts indicate that no campus-generated traffic will use the 120th Avenue Extension. All campus-related traffic traveling between 19th Street and locations east of 132nd Avenue instead would use I-405 and SR-522. As a result, the campus will have no impact on the 120th Avenue Extension.

♦ 39th Avenue Extension

(The 39th Avenue Extension will connect existing 120th Avenue, at 240th Street, to existing 39th Avenue, at 228th Street). The forecasted 2015 p.m. peak hour traffic volume on the 39th Avenue Extension is 1,420 vehicles (280 southbound and 1,140 northbound). The traffic forecasts also indicate that 110 campus-generated vehicles will use the 39th Avenue Extension (30 southbound and 80 northbound), which comprises less than 8% of the forecasted traffic.

♦ 228th Street, I-405 - 39th Avenue

The traffic forecasts indicate that a negligible volume of campus-generated traffic will use 228th Street between I-405 and 39th Avenue. This section of 228th Street is not any direct path to/from the campus; use of this section of 228th enroute to/from the campus' main access routes -- I-405 and SR-527 -- requires out-of-direction travel and offers no time or convenience advantage for campus traffic. As a result, the campus will have no impact on 228th Street between I-405 and 39th Avenue.

♦ 228th Street, Locust Way - 9th Avenue

The forecasted 2015 p.m. peak hour traffic volume on the 228th Street between Locust Way and 9th Avenue ranges from 1,300 east of Locust (690 westbound and 610 eastbound) to 1,800 west of 9th (1,000 westbound and 800 eastbound). The traffic forecasts also indicate that campus-generated traffic will range from 30 vehicles east of Locust to 80 vehicles west of 9th. Campus traffic on 228th comprises less than 5% of total volume west of 9th, declining to less than 3% east of Locust.