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Abstract

We consider a principal who wishes to screen an agent with discrete types by offering a
menu of discrete quantities and discrete transfers. We assume that the principal’s valuation
is discrete strictly concave and use a discrete first-order approach. We model the agent’s
cost types as non-integer, with integer types as a limit case. Our modeling of cost types
allows us to replicate the typical constraint-simplification results and thus to emulate the
well-treaded steps of screening under a continuum of contracts.

We show that the solutions to the discrete F.O.C.s need not be unique even under dis-
crete strict concavity, but we also show that there cannot be more than two optimal contract
quantities for each type, and that—if there are two—they must be adjacent. Moreover,
we can only ensure weak monotonicity of the quantities even if virtual costs are strictly
monotone, unless we limit the “degree of concavity” of the principal’s utility. Our discrete
screening approach facilitates the use of rationalizability to solve the screening problem.
We introduce a rationalizability notion featuring robustness with respect to an open set of
beliefs over types called ∆-O Rationalizability, and show that the set of ∆-O rationalizable
menus coincides with the set of usual optimal contracts—possibly augmented to include
irrelevant contracts.
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1 Introduction

We consider a principal (she) who wants to procure a good from an agent (he). The agent’s
cost structure, represented by his marginal cost, is his private information. In order to screen
the agent, the principal offers a menu of contracts, each contract specifying a quantity and
monetary transfer catered to each of the agent’s possible marginal cost types (Mirrlees, 1971;
Mussa and Rosen, 1978; Baron and Myerson, 1982; Maskin and Riley, 1984).

In contrast to the existing literature, we focus on the case where marginal cost types, quan-
tities, and transfers are all discrete. There are at least three reasons for it: First, this case is
more realistic. Quantities can only be measured with finite precision, and monetary transfers
have smallest units. While the standard first-order approach used to study the screening prob-
lem is elegant and extremely useful, it is important to scrutinize whether the well-known results
of continuous marginal analysis of the screening problem can be regained in a entirely discrete
setting. Second, the discrete approach to screening facilitates going beyond the equilibrium
analysis. For instance, rationalizability (Bernheim, 1984; Pearce, 1984) is a desirable solution
concept when no equilibrium behavior can be assumed such as when the principal is unaware of
some of the agent’s types, as we analyze in Francetich and Schipper (2025). Our analysis here
provides the full-awareness benchmark to Francetich and Schipper (2025). Compared to stan-
dard approaches to screening, we give up the common prior assumption. Third, although we are
not exploring this here further, classical computability based on the Church-Turing Hypothesis
fundamentally requires discreteness. Our approach should be instrumental in facilitating the
analysis of computability of the screening problem.

There are two important challenges when dealing with discrete contracts and when taking
a rationalizability approach, respectively. With discrete contracts, even if some of the usual
constraint-simplification results can be extended, the characterization of transfers in terms of
surplus and information rents may not hold. This could preclude substituting for the transfers
in the principal’s objective function, further complicating the problem. Under rationalizability,
in addition, the usual equilibrium tie-breaking assumptions to resolve the agent’s indifferences
between different contracts and/or the outside option cannot be assumed.

To expand on the last point: When no equilibrium tie-breaking convention can be assumed,
types of the agent who are indifferent between different contracts in the menu, or between
the menu and their outside option, may choose the “wrong” contract and create unintended
bunching. To counter, the principal may want to provide strict incentives for the agent to self-
select into the “right” choice, i.e., impose incentive compatibility and participation constraints
with strict inequalities. With a continuum of contracts, the problem is that there is no well-
defined “smallest transfer” to break the indifference implying non-existence of optimal contracts
that observe strict incentive compatibility and participation constraints. However, discreteness
by itself does not entirely avert the problem: If the transfer discrete concave screening can match
the agent’s total cost or rent, the relevant incentive compatibility or participation constraints
would still hold with equality.

We tackle all of these problems simultaneously through our specification of types as non-
integer costs. Our specification of non-integer types introduces a round-up rent that makes
all incentives strict, simplifying the rationalizability analysis and yielding sharper predictions.
It also allows us to replicate the usual constraint-simplification results and characterization of
transfers for discrete contracts, facilitating the comparison of our results with those obtained
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from standard equilibrium screening. It features the case of integer costs as a limiting case.
Aside from the technical convenience, non-integer types can reflect the fact that private costs
can be nuanced, idiosyncratic, implicit, unverifiable and even cognitive and subjective while
the terms of a contract are typically standardized by objective scales of measurements that
contracts can explicitly be written on and that can be verified ex post. We believe that’s one of
the reasons why contracts cannot directly conditions on marginal costs. We also note that if the
discrete concave screening for quantities and transfers and the discrete concave screening for
marginal costs are independently drawn at random from real-valued discrete concave screenings,
then drawing the same discrete concave screening for both quantities and transfers on one hand
and marginal costs on the other would be highly non-generic.

To solve the screening problem, we emulate a first-order approach using discrete forward and
backward derivatives. Unlike in the standard continuum case, the optimal menu of contracts
may not be unique even under strict concavity of the principal’s valuation function. Nonetheless,
we show that there cannot be more than two optimal quantities for each type, and—if there
are two—they must be adjacent. Moreover, this is a knife-edge result and can be avoided with
a slight perturbation of the type distribution. Now, even if the principal is indifferent between
offering two different quantities to a given type, the agent is not: We show that the agent always
prefers the larger quantity, as the corresponding contract yields a higher round-up rent.

Another departure from standard screening is that different types may be awarded the same
quantity in the optimal contract even if virtual costs are strictly monotone. In other words,
we may have “non-binding” bunching, in the sense that the solution to the principal’s problem
omitting the monotonicity constraints satisfies at least some of the latter with equality. This
can happen if the principal’s valuation function is “too concave,” so we introduce a condition
“limiting” its concavity that ensures strict monotonicity.

Having characterized the optimal discrete screening program of the principal, we develop
a rationalizability approach. Rationalizability is an iterative reduction procedure on beliefs
and strategies. At the first level, each player keeps all strategies that are rational w.r.t. some
belief. For the agent, the beliefs over the principal’s strategy are degenerate because he observes
the menu of contracts offered by the principal. Thus, for the agent, rationality means simply
self-selecting into the best contract in the menu or the outside option—effectively satisfying
incentive compatibility constraints and participation constraints. The principal, in contrast,
must form beliefs not just about the agent’s strategy but also about his type.

The first obstacle to a rationalizability analysis is that not all marginal beliefs on types
are consistent with monotone virtual costs. Thus, we restrict the principal’s marginal beliefs
over types to be log-concave, a standard assumption in information economics (e.g., Bagnoli and
Bergstrom, 2005) interpreted as the principal having single-peaked beliefs over the agent’s types.
Rationalizability notions with belief restrictions in games with incomplete information have been
studied at least since Battigalli and Siniscalchi (2003) and Battigalli (2003) under the name
of ∆-Rationalizability (see Battigalli and Siniscalchi, 2003; Battigalli and Friedenberg, 2012;
Battigalli and Prestipino, 2013; Brandenburger, Friedenberg, and Keisler, 2008; Brandenburger
and Friedenberg, 2010). However, we are not aware that the restriction to log-concavity has
been explored previously in rationalizability notions.

The second obstacle, as noted earlier, is that discrete strict concavity does not imply unique-
ness of optimal contracts. As this is a knife-edge case with respect to the principal’s marginal
beliefs on marginal cost types, we rule out non-uniqueness by requiring robustness to belief
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perturbations. More precisely, we require the principal’s strategy to be rational w.r.t. an
open set of beliefs over marginal cost types.1 Hence, we call our rationalizability concept ∆-O
Rationalizability.

As usual for rationalizability notions, at higher levels ℓ, players believe in (ℓ − 1) level
strategies of the opponent if possible. For the principal, this means that at level 2 she is
certain that the agent observes incentive compatibility and participation constraints. Thus, she
essentially solves her program at the second level; no further reductions of the set of strategies
occur at levels higher than 2. Moreover, we show that the set of ∆-O rationalizable contracts
coincides with the set of usual optimal menus (for the corresponding restricted beliefs), possibly
expanded to include redundant contracts.

We are not aware of any rationalizability concept that require a rationalizable strategy to
be best response to all beliefs in an nonempty open set of beliefs. Perhaps the closest approach
(for static games with complete information) is by Ziegler and Zuazo-Garin (2020) who require
a rationalizable strategy to be a best response to all beliefs in a subset of beliefs over remaining
strategies. Their aim is to model cautiousness and ambiguity. In contrast, we use the idea
in the context of incomplete information to model robustness to small perturbations of beliefs
over marginal-cost types and hence slight perturbations of virtual costs.

Our paper contributes to the classic literature on screening. Both the standard case with
a continuum of types or two discrete types and continuum of quantities and transfers have
been extensively studied and applied throughout economics. The case with a finite number
of types but a continuum of quantities and transfers has also been studied in textbooks (e.g.,
three marginal cost-types in Laffont and Martimort, 2001). Yet, we are not aware of any study
using discrete contracts, even though it is very realistic. We also contribute to the literature
on rationalizability in games with incomplete information (Battigalli, 2003, 2006; Battigalli
and Siniscalchi, 2003; Heifetz, Meier, and Schipper, 2021; Li and Schipper, 2019) by exploring
rationalizability with logconcavity belief-restrictions on marginal cost-types and robustness via
rationality with respect to an open set of beliefs.

In Francetich and Schipper (2025), we expand on the problem by making the principal
initially unaware of some of the agent’s types. The agent has the option to raise the principal’s
awareness, totally or partially, before contracting. Further restricting beliefs to satisfy reverse
Bayesianism, a “wariness” condition, and a monotonicity condition, we show that if the principal
is ex ante only unaware of high cost types, all of these types have an incentive raise her awareness
of them—otherwise, they would not be served. In the special case of three types, the two lower
cost types that the principal is initially aware of also want to raise her awareness of the high cost
type; their quantities suffer no additional distortions and they both earn an extra information
rent. This is very intuitive: The presence of an even higher cost type makes the original two
look better.

However, with more than three types, we show that this intuition may break down for types
of whom the principal is initially aware of so that raising the principal’s awareness could cease
to be profitable for those types. The reason is that after raising awareness of higher-cost types,
the principal may focus her belief on higher-cost types. Consequently, the principal may not
design a menu with a dedicated contract for such lower-cost type, who would then need to

1As the type space is finite, the set of distributions is identified with a simplex and we employ the usual
topology.
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bunch and select a contract dedicated for another type, which might be less appealing than the
contract selected by the type without raising awareness. When the principal is ex ante only
unaware of more efficient (i.e., lower-cost) types, then no type raises her awareness, leaving her
none the wiser. Intuitively, raising awareness of lower-cost types makes others look worse in
the eye of the principal, while said types can enjoy a higher surplus under the “default” offer.

The paper is organized as follows. Section 2 presents the model. Section 3 analyzes the
principal’s screening problem and shows that the usual solution may fail to be unique and
strictly monotone. Section 4 further characterizes optimal contracts, while Section 5 develops
our rationalizability analysis. Finally, Section 6 concludes. Appendix A presents tools and
results of discrete concave optimization, while Appendix B features characterizations of log-
concavity of beliefs on types.

2 Model

A principal (P , “she”) wants to procure a quantity q of an object from an agent (A, “he”) in
exchange for a transfer t. We assume that q, t ∈ D := {0, 1, ..., b} for some b ∈ N. The agent’s
marginal cost is his private information; we denote it by θ ∈ Θ, where:

Θ =

{
1− 1

γ
, . . . ,m− 1

γ

}
for some γ > b > m. We require that both γ and b are large compared to m, so that the
principal is able to design contract menus with as many contracts as cost types there are—if
she desires to do so.2

Notice that the types in Θ are non-integer. Our specification of non-integer types allows
us to accomplish two simultaneous goals: (1) To replicate the usual constraint-simplification
steps and thus obtain formulas more-closely comparable to standard results; and (2) to break
indifferences in incentive and participation constraints due to the mismatch between integer
transfers and non-integer total costs. Moreover, we can accommodate integer types by simply
taking limit as γ → ∞. Of course, in the limit, we revert back to possibly weak incentive
and participation constraints. If we take the usual equilibrium screening approach, resolving
indifferences in favor of the principal, this is not a problem.

The principal screens the agent by offering him the choice of a contract c := (q, t) from a
menu of contracts M . The set of contract menus is M := 2D

2 \ {∅}. Presented with a menu
of contracts M ∈ M, the agent chooses either a contract c = (q, t) ∈ M or takes his outside
option, o, identified by the null-contract (0, 0), and the game ends. The payoff for the agent
with type θ from signing contract c = (q, t) is given by uA(c, θ) := t − θq, while he earns
uA(o, θ) = 0 from the outside option. The principal’s benefit of output is given by a function
v : D −→ R, and her utility or payoff from a contract c = (q, t) is uP (c) = v(q)− t. We assume
the following about v(q).

Assumption 1 The function v satisfies the following properties:

2Although our representation of cost types is unidimensional, we can think of θ ∈ Θ as a score that aggregates
the impact of various factors affecting marginal costs, reminiscent of “pseudotypes” in scoring auctions; see, for
instance, Asker and Cantillon (2006) or Bajari, Houghton, and Tadelis (2014).
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1. v(0) = 0;

2. v(q) is strictly increasing in q;

3. v(q) is strictly discrete concave in q: For every q ∈ {1, . . . , b−1}, v(q+1)+v(q−1) < 2v(q).

Assumptions 1.1 and 1.2 are standard in the screening literature, while Assumption 1.3 is
the discrete counterpart of the typical assumption of strict concavity in the literature.

We can characterize the second and third conditions in terms of discrete derivatives. Define
∆−v(q) := v(q)− v(q − 1) for q ∈ {1, ..., b} and ∆+v(q) := v(q + 1)− v(q) for q ∈ {0, ..., b− 1};
these are the discrete backward and forward derivatives of v(q), respectively. By Lemma A2
in the appendix, Assumption 1.2 is equivalent to either one of the conditions ∆−v(q) > 0
for q ∈ {1, ..., b} or ∆+v(q) > 0 for q ∈ {0, ..., b − 1}. Defining the second discrete derivative
∆+∆−v(q) := ∆+(∆−v(q)), we can restate Assumption 1.3 as ∆+∆−v(q) < 0 for q ∈ {1, . . . , b−
1}.

The principal chooses a menu of contracts to maximize her expected payoff under some full-
support belief about types, p ∈ int(∆(Θ)) with ∆(Θ) denoting the set of probability measures
on Θ and int(∆(Θ)) being the interior of ∆(Θ). Note that p does not need to be a common
prior. It could be any marginal belief over cost types that the principal uses to rationalize a
menu of contract.

3 The Screening Problem

In this section, we set up the screening problem and employ the structure of our marginal
cost type space to obtain constraint-simplification results that mimic the traditional ones. To
facilitate the analysis, we define recursively the j-th highest order statistics of the marginal cost
types for j ∈ {1, ...,m}, respectively, by

κ(1) := maxΘ, and κ(j) := max(Θ \ {κi : i = 1, . . . , j − 1}) (1)

for j = 2, . . . ,m. Denote by (qi, ti) the contract designed for type κ(i), and by pi the probability
of κ(i) under p, for i = 1, . . . ,m. We can write the principal’s optimization problem as:

max
(qi,ti)i=1,...,m∈(D2)m

m∑
i=1

pi
(
v(qi)− ti

)
subject to the usual incentive compatibility and participation constraints, IC and PC, respec-
tively: For all i, j = 1, . . . ,m:

ICi,j :

ti − κ(i)qi ≥ tj − κ(i)qj

PCi:
ti − κ(i)qi ≥ 0.
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We will show that several of the standard constraint-simplification results can be extended
to our discrete setting. For instance, PC1 implies PCi for every other i under incentive com-
patibility, and the only relevant incentive constraints are the local ones if the allocation rule is
monotone.

Lemma 1 For all i = 2, ...,m, PC1 and ICi,i−1 implies PCi.

Proof. Observe that:

0 ≤ t1 − κ(1)q1
κ(1)>κ(2)

< t1 − κ(2)q1
IC2,1

≤ t2 − κ(2)q2

κ(2)>κ(3)

< t2 − κ(3)q2 ≤ . . .
ICm,m−1

≤ tm − κ(m)qm.

This establishes the result. □

Lemma 2 If for all i = 2, ...,m, qi ≥ qi−1 (qi > qi−1), then ICi,i−1 implies ICi,j (with strict
inequality) for all j < i.

The proof is analogous to the proof of the next lemma:

Lemma 3 If for all i = 1, ...,m − 1, qi ≥ qi−1 (qi > qi−1), then ICi,i+1 implies ICi,j (with
strict inequality) for all j with m ≥ j > i.

Proof. We prove by induction on the index of the order statistics. The base case is just
ICi,i+1.

Induction hypothesis: For some i, j = 1, ..., n− 1 with i+ j < m,

ti − κ(i)qi ≥ (>) ti+j − κ(i)qi+j .

Inductive step: We need to show:

ti+j − κ(i)qi+j ≥ (>) ti+j+1 − κ(i)qi+j+1.

Rewrite ICi+j,i+j+1,

ti+j − κ(i+j)qi+j ≥ (>) ti+j+1 − κ(i+j)qi+j+1

ti+j − ti+j+1 ≥ (>) κ(i+j)(qi+j − qi+j+1).

Since qi+j+1 ≥ (>) qi+j and κ(i) > κ(i+j)

ti+j − ti+j+1 ≥ (>) κ(i)(qi+j − qi+j+1)

ti+j − κ(i)qi+j ≥ (>) ti+j+1 − κ(i)qi+j+1.

This concludes the proof. □

Next, we want to show that the relevant constraints “bind.” With non-integer costs but
integer transfers, however, binding looks different here. Throughout the analysis, we will make
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use of the ceiling function ⌈·⌉; see Appendix A for properties of the ceiling function. Notice
that, for every κ(i) with i = 1, . . . ,m, we have that ⌈κ(i)⌉ = κ(i) + 1

γ .

By ICi,i−1, we have:

ti − κ(i)qi ≥ ti−1 − κ(i)qi−1

ti ≥ ti−1 + κ(i)(qi − qi−1).

Now, κ(i)(qi − qi−1) is not an integer. Thus, the smallest transfer ti that observes ICi,i−1 is:

ti =
⌈
ti−1 + κ(i)(qi − qi−1)

⌉
ti = ti−1 + ⌈κ(i)(qi − qi−1)⌉ by Lemma A9 (vi). (2)

In a standard setting with integer types, we would be able to write ti = κ(i)qi + ti−1 −
κ(i)qi−1 and obtain a characterization of transfers in terms of “cost plus information rents.”
Unfortunately, it is not true in general that ⌈αn⌉ = ⌈α⌉n for an integer n; for instance, ⌈2.5×
2⌉ = 5 < 6 = ⌈2.5⌉ × 2. This is where our specification of types comes in handy.

Lemma 4 For any n ∈ D and j = 1, ...,m,
⌈(

j − 1
γ

)
n
⌉
=
⌈
j − 1

γ

⌉
n = jn.

Proof. As γ > b implies that n
γ ∈ (0, 1) for any n ∈ D, we have

⌈(
j − 1

γ

)
n
⌉
=
⌈
jn− n

γ

⌉
=

jn+
⌈
−n

γ

⌉
= jn. □

Lemma 5 For all i = 2, ...,m, ICi,i−1 binds in the following sense:

ti = ti−1 +
⌈
κ(i)
⌉
(qi − qi−1) (3)

in the principal’s optimum.

Proof. Most of the argument is laid out in the text. From (2), apply Lemma 4. □

Remark 1 PC1 is binding: t1 =
⌈
κ(1)

⌉
q1.

Combining Lemma 5 and Remark 1, we can write the transfers as follows:

ti =
⌈
κ(i)
⌉
qi +

i−1∑
j=1

qj .

As costs are non-integer but transfers must be integer, the latter involve a round-up rent that
all types enjoy:

(⌈
κ(i)
⌉
− κ(i)

)
qi (aside from potential information rents). This round-up rent

breaks the indifference and provides strict incentives for reporting truthfully and for participat-
ing.

Finally, we can replicate the result that local “downward” IC constraints (i.e., overstating
your cost) ensure all local IC constraints.
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Lemma 6 For all i = 1, ...,m− 1, qi+1 ≥ qi (q
i+1 > qi) and ICi,i−1 implies ICi,i+1 (with strict

inequality), i.e.,
ti − κ(i)qi ≥ (>) ti+1 − κ(i)qi+1.

Proof. For any i = 1, ...,m − 1, we have that ti+1 − ti = ⌈κ(i+1)⌉(qi+1 − qi). Since
κ(i) = κ(i+1) + 1,

ti+1 − ti =
⌈(

κ(i) − 1
)⌉

(qi+1 − qi)

ti+1 − ti =
(⌈

κ(i)
⌉
− 1
)
(qi+1 − qi)

=
⌈
κ(i)
⌉
(qi+1 − qi)− (qi+1 − qi).

Note that −(qi+1 − qi) < 0 by monotonicity. Thus, ti+1 − ti <
⌈
κ(i)
⌉
(qi+1 − qi). Assume now,

to the contrary, that ti − κ(i)qi ≤ ti+1 − κ(i)qi+1. Then,

ti − κ(i)qi ≤ ti+1 − κ(i)qi+1

κ(i)(qi+1 − qi) ≤ ti+1 − ti

κ(i)(qi+1 − qi) ≤
⌈
κ(i+1)

⌉
(qi+1 − qi).

With qi+1 > qi, the inequality above leads to κ(i) <
⌈
κ(i+1)

⌉
, which is false:

κ(i+1) + 1 = κ(i) <
⌈
κ(i+1)

⌉
≤ κ(i+1) + 1.

Thus, the lemma follows. □

Now, we can reduce the principal’s problem as follows:

max
(qi,ti)i=1,...,m∈(D2)m

m∑
i=1

pi
(
v(qi)− ti

)
subject to, for all i = 2, ...,m,

ICi,i−1 for i = 2, . . .m:

ti =
⌈
κ(i)
⌉
qi +

i−1∑
j=1

qj ,

PC1:

t1 =
⌈
κ(1)

⌉
q1,

Mi,i−1 for i = 2, . . .m:
qi ≥ qi−1.

We tentatively omit Mi,i−1, the monotonicity constraints. Substituting for the transfers in the
objective function yields:

f(q1, ..., qm) :=
m∑
i=1

pi

v(qi)−
⌈
κ(i)
⌉
qi −

i−1∑
j=1

qj

 =
m∑
i=1

pi

(
v(qi)−

(⌈
κ(i)
⌉
+

∑
j>i p

j

pi

)
qi

)
,
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where
∑

j>m pj ≡ 0. The last equation follows from:

m∑
i=1

pi
i−1∑
j=1

qj =
m∑
i=1

 m∑
j>i

pjqi

 =
m∑
i=1

pi

(∑m
j>i p

j

pi
qi

)
.

We are interested in maximizing f(q1, ..., qm), which we can do term by term. Thus, for each
i = 1, . . . ,m, we want to maximize:

v(qi)−

(⌈
κ(i)
⌉
+

∑
j>i p

j

pi

)
qi.

Employing the tools of discrete concave optimization presented in Appendix A, we derive
the discrete first-order conditions for i = 1, ...,m:

∆+v(qi)−

(⌈
κ(i)
⌉
+

∑
j>i p

j

pi

)
≤ 0

∆−v(qi)−

(⌈
κ(i)
⌉
+

∑
j>i p

j

pi

)
≥ 0,

which we can combine as follows:

∆+v(qi) ≤
⌈
κ(i)
⌉
+

∑
j>i p

j

pi
≤ ∆−v(qi). (4)

The combined F.O.C.s are analogous to the usual calculus-based F.O.C.s.

Denote by φi the discrete version of the virtual cost of type κ(i):

φi :=
⌈
κ(i)
⌉
+

∑m
j>i p

j

pi
.

We can write the F.O.C.s as ∆+v(qi) ≤ φi ≤ ∆−v(qi); see Figure 1. (The left panel of
Figure 1 depicts schematically the principal’s utility function with the optimum; the right panel
shows how the discrete forward and backward derivatives of the value function “sandwich” the
optimum at the corresponding virtual cost.) Notice that the lowest marginal cost type in Θ,
κ(m), is commissioned the efficient amount of output (“no distortion at the top”), i.e.,

∆+v(qm) ≤
⌈
κ(m)

⌉
≤ ∆−v(qm).

As in standard contracting, all other cost types suffer a downward distortion in the amount
commissioned, in order to save on information rents.

The example below illustrates the computation of optimal quantities for the principal from
the conditions in (4).

Example 1 Let D = {0, 1, . . . , 100}, Θ = {0.99, 1.99, 2.99} (here, γ = 0.01), and v(q) =
50q−0.5q2; we have ∆+v(q) = 49.5−q and ∆−v(q) = 50.5−q. We have ⌈κ(1)⌉ = 3, ⌈κ(2)⌉ = 2,
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Figure 1: F.O.C.s for the reduced principal’s problem for type κ(i).

and ⌈κ(3)⌉ = 1. Consider the beliefs given by p1 = p2 = p3 = 1
3 , which yield φ3 = 1, φ2 = 3,

and φ1 = 5. The F.O.C. for q3 is:

49.5− q3 ≤ 1 ≤ 50.5− q3;

rearranging terms leads to 48.5 ≤ q3 ≤ 49.5, which yields q3 = 49. For q2,

49.5− q2 ≤ 2 +
p3

p2
≤ 50.5− q2

49.5− q2 ≤ 3 ≤ 50.25− 0.5q2.

Now, we get 46.5 ≤ q2 ≤ 47.5, so q2 = 47. Finally, for q1,

49.5− q1 ≤ 3 +
p2 + p3

p1
≤ 50.5− q1

49.5− q1 ≤ 5 ≤ 50.5− q1;

we can rewrite the inequalities as 44.5 ≤ q1 ≤ 45.5, so we get q1 = 45.

One notable difference with the case of continuum contracts is that, even under strict
concavity of v(q), the F.O.C.s need not have a unique solution. We illustrate non-uniqueness
in the following example.

Example 2 Consider the same setting as in example 1, but now let the beliefs be given by
p1 = p3 = 0.25, and p2 = 0.5. The F.O.C.s for q3 is independent of the beliefs, so we once
again get q3 = 49. For q1, we now have:

49.5− q1 ≤ 3 +
p2 + p3

p1
≤ 50.5− q1

49.5− q1 ≤ 6 ≤ 50.5− q1;
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we can rewrite the inequalities as 43.5 ≤ q1 ≤ 44.5, so we get q1 = 44. Finally, for q2,

49.5− q2 ≤ 2 +
p3
p2

≤ 50.5− q2

49.5− q2 ≤ 2.5 ≤ 50.5− q2.

Now, we get 47 ≤ q2 ≤ 48, so we have two possible solutions: q2 = 47 and q2 = 48.

In fact, for any type, there can be two solutions—but no more than two, and they must
be adjacent. For any type κ(i), qi and qi + 1 are the two solutions if and only if ∆−v(qi +
1) = ∆+v(qi) = φi. Lemma A8 in the appendix provides a general proof, but we present the
statement in the context of our principal’s problem below.

Lemma 7 For each i = 1, . . . ,m, there are at most two global maximizers. If qi and qi
′
are the

global maximizers, then either qi = qi
′
or max{qi, qi′} = min{qi, qi′}+ 1. Moreover, if qi > qi

′
,

then qi and qi
′
are both global maximizers if and only if ∆−v(qi) = φi = ∆+v(qi

′
).

Figure 2 illustrates the condition identified in Lemma 7. The two optimal quantities attain
the exact same value of v(q) − φiq. If quantities could be chosen from a continuum and v(q)
were extended accordingly, strict concavity implies that all intermediate values for q are even
better; however, such intermediate values are infeasible under integer contracts.

Figure 2: There are two different optimal quantities for type κ(i).

We now turn to the ignored monotonicity constraints. With finite types, a commonly-
assumed sufficient condition for monotonicity not to bind is log-concavity of p.

Assumption 2 Probability distribution p ∈ ∆(Θ) is log-concave if for all i = 2, ...,m − 1,
pipi ≥ pi+1pi−1.

We denote the set of full-support, log-concave distributions as ∆FLC(Θ) ⊂ int(∆(Θ)).
Lemma B1 in the appendix shows that Assumption 2 leads to a non-increasing likelihood ratio:

pi+k

pi
≥ pj+k

pj
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for any i, j = 1, ...,m and k such that j > i and j + k ≤ m; and to a non-increasing discrete
inverse hazard rate or Mills’ ratio: For any i, j = 1, ...,m with j > i, mi

d ≥ mj
d, where:

mi
d :=

∑m
k>i p

k

pi
.

It can also be shown that Assumption 2 yields decreasing virtual costs: φi+1 < φi for all
i = 1, ...,m− 1 (see Lemma B2 in the appendix), and implies monotonicity of the allocations.

Proposition 1 Under Assumptions 1 and 2, the F.O.C.s imply the monotonicity constraints
Mi,i−1 for all i = 1, ..., n − 1. If for some i, i + 1 we have two distinct solutions qi, q̂i and
qi+1, q̂i+1, then min{qi+1, q̂i+1} ≥ max{qi, q̂i}.

Proof. For i = 1, . . . ,m − 1, let qi and qi+1 be solutions to the corresponding F.O.C.s,
∆+v(qi) ≤ φi ≤ ∆−v(qi) and ∆+v(qi+1) ≤ φi+1 ≤ ∆−v(qi+1). Assume that we have some
i = 1, . . . ,m − 1 such that qi > qi+1. Then, by Lemma A6 (iv) in the appendix, ∆−v(qi) ≤
∆+v(qi+1). Combining the conditions, we get:

φi ≤ ∆−v(qi) ≤ ∆+v(qi+1) ≤ φi+1,

which violates Assumption 2. □

While Assumption 2 is sufficient for monotonicity of the quantities, it does not guarantee
strict monotonicity even if the discrete Mills’ ratio is strictly monotone. This is demonstrated
in the next example.

Example 3 Consider the utility function v(q) = 253q−2.5q2, types Θ = {0.99, 1.99, 2.99}, and
beliefs p1 = p2 = p3 = 1

3 . Here, ∆+v(q) = 250.5 − 5q, ∆−v(q) = 255.5 − 5q, φ1 = 5, φ2 = 3,
and φ3 = 1. We have:

250.5− 5q3 ≤ 1 ≤ 255.5− 5q3 ⇒ q3 = 50;

250.5− 5q2 ≤ 3 ≤ 255.5− 5q2 ⇒ q2 = 50;

250.5− 5q1 ≤ 5 ≤ 255.5− 5q1 ⇒ q1 = 50.

The issue in Example 3 is that v(q) is “too concave”: The absolute value of the slope of
∆+v(q) and ∆−v(q) is (weakly) greater than all virtual utilities φ1, φ2, φ3. Thus, when dividing
to solve for the quantities, the endpoints of the quantity ranges end up differing by less than 1
and “trap” the same integer; see Figure 3.

In some applications (especially when the screening problem is to be solved using rational-
izability as we demonstrate in the next section), we may want monotonicity to hold strictly, so
as to provide strict incentives for the agent. To ensure strict monotonicity, we can restrict the
“degree of concavity” of v(q) by setting a lower-bound on ∆+∆−v(q).3

Assumption 3 For every q ∈ D, ∆+∆−v(q) ≥ −1.

3Recall that Assumption 1.3 can be written as 0 > ∆+∆−v(q).
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Figure 3: Types κ(i) and κ(i+1) are awarded the same quantity.

Proposition 2 Under Assumptions 1 through 3, the F.O.C.s imply Mi,i−1 for all i = 1, ...,m−1
with strict inequality; i.e., qi+1 > qi. If for some i, i + 1 we have two distinct solutions qi, q̂i

and qi+1, q̂i+1, then min{qi+1, q̂i+1} > max{qi, q̂i}.

Proof. Assumptions 2 leads to weak monotonicity, so it remains to show that qi+1 ̸= qi. By
Assumption 3,

∆+∆−v(qi) ≥ −1

∆+∆−v(qi) ≥
∑m

j>i+1 p
j

pi+1
−
∑m

j>i p
j

pi
− 1

∆−v(qi + 1)−∆−v(qi) ≥
∑m

j>i+1 p
j

pi+1
−
∑m

j>i p
j

pi
+ κ(i+1) − κ(i)

∆+v(qi)−∆−v(qi) ≥ φi+1 − φi. (5)

From Inequalities (4), it follows that ∆+v(qi+1)−∆−v(qi) < φi+1 − φi.

Now, suppose that qi+1 = qi. Then, we have ∆+v(qi)−∆−v(qi) < φi+1−φi, a contradiction
to Inequality (5).

Finally, suppose that the F.O.C.s for type κ(i) has two solutions. Then, ∆−v(qi + 1) =
∆+v(qi) = φi. By the previous argument, qi+1 ≥ qi + 1. Assume, to the contrary, that
qi+1 = qi + 1. Then,

∆+v(qi+1) ≤ φi+1 ≤ ∆−v(qi+1)

∆+v(qi + 1) ≤ φi+1 ≤ ∆−v(qi + 1)

∆+v(qi + 1) ≤ φi+1 ≤ ∆−v(qi + 1) = φi.

Rewriting the last line and taking advantage of Lemma B2 in the appendix, we obtain

∆+v(qi + 1) ≤ φi+1 < φi = ∆−v(qi + 1),

which violates Inequality (5) for qi+1. □
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4 Optimal Menus

For a given belief p ∈ ∆FLC(Θ) and type κ(i), we denote by Qi(p) the set of optimal quantities.
Under Assumptions 1 through 3, we have:

Qi(p) = {q ∈ D : ∆+v(q) ≤ φi(p) ≤ ∆−v(q)},

where we now write φi(p) to make explicit the dependence of virtual costs on beliefs. Recall
that sets Qi(p) are at least singletons and at most doubletons consisting of quantities that are
adjacent to each other on the discrete concave screening D.

We define a menu of optimal contracts as a menu consisting of exactly m contracts, with
exactly one of them for each marginal cost-type, that together solve the F.O.C.s in (4) given p.
The set of menus of optimal contracts is:4

M∗(p) :=

{
M ∈ M :

|M | = m and ∀i = 1, ...,m ∃!(qi, ti) ∈ M(
qi ∈ Qi(p), ti =

⌈
κ(i)
⌉
qi +

∑i−1
j=1 q

j
) }

.

When the solution to the principal’s problem with belief p is unique, then M∗(p) is a
singleton, i.e., it consists of just one menu. When the optimal contract for a given type is non-
unique, the principal could offer both. In this setting, we show that the agent strictly prefers
the contract with the higher of the two quantities, as it means earning a higher round-up rent.

Lemma 8 Given p, let both M,M̃ ∈ M∗(p) be two different optimal menus for the principal
for which there exists some type of the agent κ(i) such that (qi, ti) ∈ M , (q̃i, t̃i) ∈ M̃ , and
qi = q̃i + 1. Then, uA(κ

(i), (qi, ti)) > uA(κ
(i), (q̃i, t̃i)).

Proof. We prove by induction on the marginal cost types.

Base case i = 1: For the optimal (q1, t1), we have:

uA(κ
(1), q1, t1) =

⌈
κ(1)

⌉
q1 − κ(1)q1

=

⌈
m− 1

γ

⌉
q1 −

(
m− 1

γ

)
q1

= mq1 −
(
m− 1

γ

)
q1 =

1

γ
q1,

which is strictly increasing in q1. Thus, we have uA(κ
(1), (q1, t1)) ≥ uA(κ

(1), (q̃1, t̃1)), with strict
inequality if q1 ̸= q̃1.

Induction hypothesis: For i = 2, . . . ,m − 1, uA(κ
(i), (qi, ti)) ≥ uA(κ

(i), (q̃i, t̃i)), with strict
inequality if qj ̸= q̃j for some j = 1, . . . , i.

Inductive step i = m: Observe that:

uA(κ
(i), qi, ti) =

⌈
κ(i)
⌉
qi +

i−1∑
j=1

qj − κ(i)qi =
1

γ
qi +

i−1∑
j=1

qj ,

4As customary, we let “∃!” stand for “There exists a unique”.
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which is increasing in qj for j = 1, ..., i− 1. Thus, uA(κ
(i), (qi, ti)) ≥ uA(κ

(i), (q̃i, t̃i)) with strict
inequality if qj is different for some j from q̃j . □

Non-uniqueness of optimal contacts for a given type is not ruled out by strict concavity, strict
incentives, or strict monotonicity. Nonetheless, it is—mostly—a knife-edge case with respect
to beliefs. If qi and qi

′
< qi are two different solutions for type κ(i), then ∆−v(qi) = φi(p) =

∆+v(qi
′
) (Lemma 7, Figure 2) and a small perturbation of the beliefs can yield uniqueness.

The exception is non-monotonicity of the contract designed for the lowest-cost agent, as the
corresponding F.O.C.s do not involve the beliefs. To tackle this last case, we introduce one last
assumption on v(q).

Assumption 4 For every q ∈ {0, ..., b− 1} and n ∈ N, ∆+v(q) ̸= n.

Assumption 4 ensures uniqueness of qm by ruling out the case ∆+v(qm) = ⌈κ(m)⌉. For the
other types, as noted, we can simply perturb beliefs.

Lemma 9 Under Assumptions 1 through 4, there exists a nonempty open set of full support
beliefs O ⊆ ∆FLC(Θ) such that M∗(p) = M∗(p′) for all p, p′ ∈ O if and only if M∗(p) = {M}.

Proof. “⇐”: If there is a full support belief p such that M∗(p) = {M}, then by Lemma 7,
we have for all types κ(i) with i = 1, . . . ,m − 1, ∆+v(qi) < φi(p). Then, there exists an open
set O around p such that for any p̃ ∈ O we still have ∆+v(qi) < φi(p̃).

“⇒”: Suppose by contradiction that there exists a nonempty open ball of full support
beliefs O ⊆ ∆FLC(Θ) such that M∗(p) = M∗(p′) for all p, p′ ∈ O but |M∗(p)| > 1. Non-
uniqueness of the optimal menu of contracts implies, by Lemma 7, that there is a type κ(i) with
i = 1, . . . ,m − 1 for which ∆+v(qi) = φi(p). Since O is open, there exists p̃ ∈ O such that
∆+v(qi) < φi(p̃), implying that M∗(p̃) is a singleton, a contradiction. □

If adding contracts to a menu is costless, there is still another sense in which we have
non-uniqueness of optimal menus: adding “irrelevant” contracts. Any menu M that is a strict
superset of a menu of optimal contracts is also optimal provided that the additional contracts
are never selected by the agent.

Thus, we can expand M∗(p) as follows. For any full-support p such that |M∗(p)| ≠ 1, let
M(p) = ∅. Otherwise, let:

M(p) :=

{
M ∈ M :

M∗(p) = {M ′},M ′ ⊆ M and ∀c ∈ M \M ′

(∄θ ∈ Θ (c ∈ argmaxc′∈M uA(c
′, θ)))

}
.

That is, if M(p) is non-empty, then any menu in M(p) includes the unique menu of optimal
contracts given p and additional contracts which no type of the agent chooses.

If we are interested in standard, equilibrium screening with integer types, then M∗(p) is
the set of optimal or equilibrium menus for the common prior p ∈ ∆FLC(Θ). Accommodating
indifferences in incentive and participation constraints as usual, we can drop Assumptions (3)
and (4).
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5 Rationalizable Screening

Francetich and Schipper (2025) employs the present setup in a problem where the principal is
initially unaware of some of the agent’s types, and the agent may raise the principal’s aware-
ness of some such types. As is typical in games with unawareness, we employ a rationalizability
approach because equilibrium lacks foundation when surprises can happen on equilibrium path
(Heifetz et al., 2013) This begs the question about rationalizable outcomes in screening with-
out unawareness. In this section, we provide the benchmark of rationalizability outcomes in
screening under full awareness. The finiteness of our setting ensures that the best responses
are non-empty valued and that higher-order beliefs are well defined. The presence of round-up
rents allows us to avert ties in incentive compatibility and participation constraints, which can-
not be resolved with an equilibrium tie-breaking assumption under rationalizability. Finally,
the robustness component of our rationalizability notion (along with Assumption 4) ensures
uniqueness of optimal quantities. We show that our rationalizability notion selects the (aug-
mented) optimal menu from Section 4. In a sense, we show that equilibrium is not necessary
to solve the screening problem.

The game proceeds in three stages: In the first stage, nature selects the payoff type of the
agent, θ ∈ Θ. In the second stage, the principal chooses a menu of contracts M ∈ M to be
offered to the agent. In the third and final stage, the agent selects a contract c = (q, t) ∈ M
or his outside option o. Since the payoff type of the agent is his private information, the
principal’s strategy space is simply M. The agent’s information sets can be identified with
tuples (θ,M) ∈ Θ × M. His strategies are maps s : Θ × M −→ {(q, t) : q, t ∈ D} with
s(θ,M) ∈ M ∪ {o}. Denote by S ⊆ (D2)Θ×M the agent’s set of strategies.

The principal forms beliefs about marginal cost-types and strategies of the agent, βP ∈
∆(Θ × S). We let ∆ be the subset of ∆(Θ × S) such that the marginal beliefs on Θ are full
support and log-concave:

∆ =
{
βP ∈ ∆(Θ× S) : margΘβP ∈ ∆FLC(Θ)

}
.

Since the agent has perfect information at each information set, his beliefs are degenerate.

Given his type, the agent chooses either a contract from the given menu or the outside
option. Thus, his best-response correspondence is:

BRA(θ,M) := arg max
c∈M∪{o}

uA(c, θ).

Next, let UP (M,βP ) denote the principal’s expected payoff from offering contract-menu M
given her belief βP ∈ ∆:

UP (M,βP ) :=
∑

(θ,s)∈Θ×S

βP ({(θ, s)}) · uP (s(θ,M)) .

Her best response correspondence is:

BRP (βP ) := arg max
M∈M

UP (M,βP ).

Our rationalizability notion, which we call ∆-O rationalizability, combines the idea of ∆-
rationalizability with best replies being robust to small perturbations of beliefs. Formally:
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Definition 1 (∆-O Rationalizability) Define recursively R0
P = M and R0

A = S and, for
k ≥ 1,

Bk
P =

{
βP ∈ ∆ : margS βP

(
Rk−1

A

)
= 1
}
;

Rk
P =

M ∈ Rk−1
P : ∃ non-empty open set O ⊆ Bk

P

M ∈
⋂

βP∈O
BRP (βP )

 ;

Rk
A =

{
s ∈ Rk−1

A : ∀(θ,M) ∈ Θ×M (s(θ,M) ∈ BRA(θ,M))
}
.

For i ∈ {P,A}, the set of player i’s ∆-O rationalizable strategies is R∞
i =

⋂∞
k=1R

k
i .

At each level k of the procedure, the principal forms beliefs about the agent’s types and
strategies such that: (a) Her marginal belief over the agent’s types has full support and is
log-concave (by the requirement that beliefs are in ∆), and (b) she is certain of the (k − 1)-
level ∆-O rationalizable strategies of the agent. She then selects a (k − 1)-level rationalizable
strategy for which there exists an open set of k-level beliefs such that the strategy is a best
response to any belief in this set. The agent at level k selects a (k− 1)-level ∆-O rationalizable
strategy such that for any cost-type of his and menu of contracts received from the principal,
he selects his best contract as long as his participation constraint is satisfied, and his outside
option otherwise.

Theorem 1 Under Assumptions 1 through 4, s∞P ∈ R∞
P if and only if there exists some p ∈

∆FLC(Θ) such that s∞P ∈ M(p). In other words, the set of ∆-O rationalizable menus of
contracts is

⋃
p∈∆FLC(Θ)M(p).

Proof. The proof is by induction on levels of elimination.

Level 1, principal. Define M∗ := {M ∈ M : ∃(q, t) ∈ M (v(q)− t > 0)}.
We claim that R1

P = M∗. First, we show (the contrapositive of) R1
P ⊆ M∗. Suppose to

the contrary that there is a menu M ∈ R1
P such that for all (q, t) ∈ M , v(q) − t ≤ 0; i.e.,

M /∈ M∗. Such a menu yields a non-positive expected payoff to the principal for any βP ∈ B1
p .

Compare this to a menu M ′ for which there exists (q, t) ∈ M ′ such that v(q) − t > 0 and for
all (q, t) ∈ M ′, v(q) − t ≥ 0. Such a menu M ′ yields a strict positive expected payoff to the
principal for any full support belief (which are contained in B1

P ), a contradiction to M ∈ R1
P .

Next, we show M∗ ⊆ R1
P . Consider a menu M ∈ M∗. Let βP ∈ B1

P assign sufficiently large
probability to the agent taking contract (q, t) ∈ M with v(q)− t > 0 when faced with menu M
and o when faced with any other menu. By continuity of von-Neumann-Morgenstern expected
utility, there exists an open ball O around βP such that M is a best response to any β′

P ∈ O.
Thus, M ∈ R1

P .

Level 1, agent. For any menu offered by the principal, the agent selects the profit max-
imizing contract given his type yielding non-negative profits; if there is no contract in the
menu yielding non-negative profits, the agent selects the outside option. Formally, R1

A =
{s ∈ S : ∀(θ,M) ∈ Θ×M (s(θ,M) ∈ BRA(θ,M))}.
Level 2, principal. The principal is now certain of R1

A. Thus, for any βP ∈ B2
P , she is certain

that the agent observes incentive compatibility and participation constraints. We claim that
R2

P =
⋃

βP∈B2
P
M(margΘ βP ).
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“⊇”: There is nothing to prove if M(margΘ βP ) = ∅, so take βP ∈ B2
P such that

M(margΘ βP ) ̸= ∅. By Lemma 9, there exists a nonempty open ball O ⊆ B2
P about βP

such that M ∈
⋂

β′
P∈O BRP (β

′
P ). Hence, M(margΘ βP ) ⊆ R2

P .

“⊆”: If M ∈ R2
P , then there exists a nonempty open set O ⊆ B2

P such that M ∈⋂
β′
P∈O BRP (βP ). For any such βP ∈ O, there exists M∗ ∈ M∗(margΘβP ) with M∗ ⊆ M .

Note that the mapping from O to M defined by M∗(margΘβP ) cannot be bijective since
O is infinite but M is finite. Then, there exists a nonempty open set O′ ⊆ O such that
M∗(margΘβ

′
P ) = M∗(margΘβ

′′
P ) = M∗ for all β′

P , β
′′
P ∈ O′, where the last equality follows

from Lemma 9. By definition of M(·), M ∈ M(margΘβ
′
P ) for all β

′
P ∈ O′.

Level 2, agent. No further change. No matter what menu the agent it presented with, he
chooses a best response and thus R2

A = R1
A.

Level 3, principal. No further change. Since R2
A = R1

A, we must have B3
P = B2

P . Thus,
R3

P = R2
P .

Level 3, agent. No further change. No matter what menu the agent is presented with, he
chooses a best response and thus R3

A = R2
A.

The maximal reduction of strategies is reached after two levels of the procedure; thus, we
have: R∞

A = R2
A, R

∞
P = R2

P . Every outcome coincides with an equilibrium outcome for some
full-support, log-concave marginal belief on Θ—possibly with additional, irrelevant contracts.
□

We conclude that under Assumptions 1 through 4, for all p ∈ ∆FLC(Θ), the standard text-
book equilibrium menu is in M∗(p) and ∆-O-rationalizable. Even if the incentive compatibility
constraints bind for the standard text-book equilibrium menu, we can perturb slightly so that
ICs hold strictly. Conversely, we have that for any ∆-O rationalizable menu, there is a common
prior p ∈ ∆FLC(Θ) for which this menu is a standard text-book equilibrium menu.

6 Conclusion

We analyze a contract-design problem in a setting with finite, non-integer marginal cost types
and finite, integer contracts. Our modeling of non-integer marginal costs allows us to repli-
cate the typical constraint-simplification results and thus to emulate the well-treaded steps of
screening under a continuum of contracts.

Employing discrete derivatives, we characterize the optimal contracts. We show that, in the
discrete setting, the solutions to the discrete F.O.C.s need not be unique even under discrete
strict concavity. Moreover, log-concavity of the distribution of types can only ensure weak
monotonicity of the quantities even if virtual costs are strictly monotone.

Under our specification of non-integer costs, all types of the agent enjoy a round-up rent.
Thus, the relevant incentive compatibility and participation constraints “bind” but with strict
inequality. Breaking indifferences simplifies the rationalizability analysis and, along with our
other assumptions, allows us to derive sharp predictions. We show that our rationalizability
notion, ∆-O rationalizability, selects the set of usual optimal contracts—possibly along with
irrelevant contracts.
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Our rationalizability analysis serves as the full-awareness benchmark for Francetich and
Schipper (2025), where the principal is initially unaware of some of the agent’s types. In
said paper, we explore the agent’s incentive to raise the principal’s awareness—either fully or
partially.

A Discrete Concave Optimization

We briefly review the basic elements of discrete concave optimization employed in the paper.
Denote by N = {1, 2, 3, ...} the set of natural numbers and by N0 = {0} ∪ N. A function
f : N0 −→ R is discrete concave if for all x ∈ N,

f(x+ 1) + f(x− 1) ≤ 2f(x).

It is discrete strictly concave if the inequality holds strictly.

We say that x is a local maximizer of f if f(x) ≥ max{f(x + 1), f(x − 1)}. It is a strict
local maximizer if the inequality holds strictly. We say that x is a global maximizer of f if
f(x) ≥ f(y) for all y ∈ N0. It is a unique global maximizer if the inequality holds strictly for
all y ̸= x.

Lemma A1 If f is discrete concave, then x is a global maximizer if and only if it is a lo-
cal maximizer. Moreover, x is the unique global maximizer if and only if it is a strict local
maximizer.

Proof. Let f be discrete concave. The “only if” direction is trivial. We prove the “if”
direction. For any n ∈ N,

0 ≤ f(x)− f(x+1) ≤ f(x+1)− f(x+2) ≤ f(x+2)− f(x+3) ≤ ... ≤ f(x+n− 1)− f(x+n),

where the first inequality follows from x being a local maximizer of f and the other inequalities
follow from discrete concavity. This implies f(x) ≥ f(x+ 1), f(x+ 1) ≥ f(x+ 2), f(x+ 2) ≥
f(x+ 3), ..., f(x+ n− 1) ≥ f(x+ n). We conclude f(x) ≥ f(x+ n) for any n ∈ N.

Similarly, for any n ∈ N,

0 ≥ f(x− 1)− f(x) ≥ f(x− 2)− f(x− 1) ≥ f(x− 3)− f(x− 2) ≥ ... ≥ f(x−n+1)− f(x−n),

where the first inequality follows from x being a local maximizer of f and other inequalities
follow from discrete concavity. This implies f(x) ≥ f(x− 1), f(x− 1) ≥ f(x− 2), f(x− 2) ≥
f(x− 3), ..., f(x− n+ 1) ≥ f(x− n). We conclude f(x) ≥ f(x− n) for any n ∈ N. Thus, x is
a global maximizer.

The version of the argument for the unique global maximizer follows from strict local max-
imizer implying that the first inequality in each chain above is a strict inequality. □

Define the discrete forward derivative of f at x ∈ N0 by

∆+f(x) := f(x+ 1)− f(x)
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and the discrete backward derivative of f at x ∈ N by

∆−f(x) := f(x)− f(x− 1).

Clearly, for any x ∈ N0,
∆+f(x) = ∆−f(x+ 1)

and for any x ∈ N,
∆−f(x) = ∆+f(x− 1).

The following observation is immediate from the definition.

Lemma A2 The following statements are equivalent:

1. Function f is monotone nondecreasing, i.e., x ≥ y implies f(x) ≥ f(y).

2. ∆+f(x) ≥ 0 for all x ∈ N0.

3. ∆−f(x) ≥ 0 for all x ∈ N.

It is monotone strictly increasing if and only if the inequalities hold strictly.

The following observation on “first-order conditions” for optimization involving discrete
derivatives is immediate from the definitions.

Lemma A3 (“First-order conditions”) We have x ∈ N0 is a local maximizer of f if and
only if

∆−f(x) ≥ 0 and ∆+f(x) ≤ 0

whenever these expressions are defined for x. It is a strict local maximizer if and only if the
inequalities hold strictly whenever these expressions are defined for x.

Denote by ∆+∆+f(x) the second discrete forward derivative of f at x defined by ∆+(∆+f(x))
(and analogously for ∆−∆−f(x), ∆−∆+f(x), and ∆+∆−f(x)).

Lemma A4 For any x ∈ N, ∆+∆−f(x) = ∆−∆+f(x).

Proof. ∆+∆−f(x) = ∆−f(x + 1) − ∆−f(x) = f(x + 1) − f(x) − f(x) + f(x − 1) =
∆+f(x)−∆+f(x− 1) = ∆−∆+f(x). □

The following observation is immediate from the definitions.

Lemma A5 The following statements are equivalent:

1. The function f is discrete concave.

2. For all x ∈ N, ∆+f(x) ≤ ∆−f(x).

3. For all x ∈ N0, ∆
+∆+f(x) ≤ 0.
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4. For all x ∈ N, ∆−∆−f(x− 1) ≤ 0.

5. For all x ∈ N, ∆+∆−f(x) ≤ 0.

6. For all x ∈ N, ∆−∆+f(x) ≤ 0.

The inequalities hold strictly if and only if f is discrete strictly concave.

Lemma A6 If f is discrete concave, then x > y implies:

(i) ∆−f(x) ≤ ∆−f(y),

(ii) ∆+f(x) ≤ ∆+f(y),

(iii) ∆+f(x) ≤ ∆−f(y),

(iv) ∆−f(x) ≤ ∆+f(y).

Proof. (i) W.l.o.g., let y ∈ N and take x := y + n for some n ∈ N. Observe that:

f(x)− f(x− 1) ≤ f(x− 1)− f(x− 2) ≤ ... ≤ f(y)− f(y − 1),

where each inequality follows from f being discrete concave. This chain of inequalities is
equivalent to:

∆−f(x) ≤ ∆−f(x− 1) ≤ ... ≤ ∆−f(y).

We conclude (i).

Item (ii) follows analogously.

For (iii), apply (2.) from the previous lemma to either (i) or (ii).

For (iv), note that by the definitions of discrete derivatives, ∆−f(x) = ∆+f(x − 1). The
conclusion follows now from (ii). □

Note that for y = x − 1, property (iv) holds with equality irrespective of whether f(x) is
discrete concave.

Lemma A7 Let f is discrete strictly concave.

(i) x > y if and only if ∆−f(x) < ∆−f(y),

(ii) x > y if and only if ∆+f(x) < ∆+f(y),

(iii) x > y if and only if ∆+f(x) < ∆−f(y) and x ̸= y,

(iv) x > y + 1 if and only if ∆−f(x) < ∆+f(y).

Proof. The “only if” conditions for (i) and (ii) follow by analogous arguments as in the proof
of Lemma A6 replacing discrete concavity with discrete strict concavity.
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(i) If: Suppose to the contrary that ∆−f(x) < ∆−f(y) and x ≤ y. If x < y, then ∆−f(x) >
∆−f(y) by the “only if” condition. If x = y, then ∆−f(x) = ∆−f(y). In either case, we obtain
a contradiction.

(ii) If: Follows analogously.

(iii) If: Suppose to the contrary that ∆+f(x) < ∆−f(y) and x < y. Then by Lemma A6
(iv), ∆+f(x) ≥ ∆−f(y), a contradiction.

Only if: If x > y, apply (2.) from Lemma A5 to either (i) or (ii).

(iv) If: Suppose to the contrary that ∆−f(x) < ∆+f(y) and x ≤ y + 1. If x = y + 1, then
∆−f(x) = ∆+f(y) by definition. If x < y + 1, then ∆−f(x) > ∆+f(y) by (iii). In both cases,
we have a contradiction.

Only if: Analogously to the proof of (iv) of Lemma A6 using discrete strict concavity instead
of discrete concavity. □

Corollary A1 If f is discrete concave, then x satisfying “first-order conditions” is sufficient
for x being a global maximizer.

Discrete strict concavity is not sufficient for the global maximizer to be unique. A simple
counterexample is f(1) = 0 = f(4), f(2) = f(3) = 1, and f(x) = −x for all other x ∈ N. This
function is easily shown to satisfy discrete strict concavity. However, the set of maximizers is
{2, 3}. Nonetheless, the argmax cannot consist of more than two adjacent elements, as Lemma 7
in the main text establishes. More generally, we state:

Lemma A8 If f is discrete strictly concave, then there are at most two global maximizers. If
{x, y} are the global maximizers, then either x = y or x = y + 1. Moreover, if x > y, then x
and y are both global maximizers if and only if ∆−f(x) = 0 = ∆+f(y).

Proof. Suppose there exist x, y ∈ N0 such that first-order conditions are satisfied:

∆+f(x) ≤ 0 ≤ ∆−f(x),

∆+f(y) ≤ 0 ≤ ∆−f(y).

By the previous corollary, both x and y must be global maximizers since f is discrete concave.
It follows that:

∆+f(x) ≤ 0 ≤ ∆−f(y),

∆+f(y) ≤ 0 ≤ ∆−f(x).

W.l.o.g., assume the x > y. If x > y + 1, then by Lemma A7 (iv), ∆−f(x) < ∆+f(y), a
contradiction to the last inequality. If x = y+1, then ∆−f(x) = ∆−f(y+1) = ∆+f(y) by the
definition of discrete derivatives. It follows that ∆−f(x) = 0 = ∆+f(y).

Conversely, assume x > y and ∆−f(x) = 0 = ∆+f(y). Since f is discrete strictly concave,
by Lemma A5 (1.), ∆+f(x) < 0 and ∆−f(y) > 0. Thus, the first-order conditions must hold.□
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For any multivariate function f : Nm −→ R, we can analogously define the partial discrete
derivatives by

∆+
i f(x1, ..., xm) = f(x1, ..., xi−1, xi + 1, xi+1, ..., xm)− f(x1, ..., xi−1, xi, xi+1, ..., xm)

and

∆−
i f(x1, ..., xm) = f(x1, ..., xi−1, xi, xi+1, ..., xm)− f(x1, ..., xi−1, xi − 1, xi+1, ..., xm).

Finally, we will require as an ingredient to our discrete analysis the floor and ceiling functions
defined by for x ∈ R,

⌊x⌋ := max{n ∈ Z : n ≤ x}
⌈x⌉ := min{n ∈ Z : x ≤ n}

We collect without proof well-known properties of the floor and ceiling functions:

Lemma A9 For any x, y ∈ R and n ∈ Z,

(i) x− 1 ≤ ⌊x⌋ ≤ x ≤ ⌈x⌉ ≤ x+ 1

(ii) ⌈x⌉ = −⌊−x⌋

(iii) ⌈x⌉+ ⌈y⌉ − 1 ≤ ⌈x+ y⌉ ≤ ⌈x⌉+ ⌈y⌉

(iv) ⌊x⌋+ ⌊y⌋ ≤ ⌊x+ y⌋ ≤ ⌊x⌋+ ⌊y⌋+ 1

(v) ⌊x+ n⌋ = ⌊x⌋+ n

(vi) ⌈x+ n⌉ = ⌈x⌉+ n

B Log-concave Beliefs

Lemma B1 Let p ∈ ∆(Θ) be a full-support distribution. If p is log-concave (Assumption 2),
then:

(i) Relative likelihoods are non-increasing in i: For any i, j = 1, ...,m and k such that j > i
and j + k ≤ m,

pi+k

pi
≥ pj+k

pj
.

(ii) The discrete Mills’ ratio is non-increasing in i: For any i, j = 1, ..., n with j > i, mi
d ≥ mj

d,
where:

mi
d :=

∑m
k>i p

k

pi
.
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Proof. For i = 1, ...,m− 2,

(pi+1)2 ≥ pipi+2

pi+1

pi
≥ pi+2

pi+1

log pi+1 − log pi ≥ log pi+2 − log pi+1.

Inductively, we have for j > i, j + 1 ≤ m,

log pi+1 − log pi ≥ log pj+1 − log pj+1.

(i) For any i, j = 1, ...,m and k such that j + k ≤ m,

pi+k

pi
=

pi+1

pi
pi+2

pi+1
· · · pi+k

pi+k−1

log

(
pi+k

pi

)
= log

(
pi+1

pi
pi+2

pi+1
· · · pi+k

pi+k−1

)
= (log pi+1 − log pi) + (log pi+2 − log pi+1) + ...+ (log pi+k − log 1)

≥ (log pj+1 − log pj) + (log pj+2 − log pj+1) + ...+ (log pj+k − log 1)

= log

(
pj+1

pj
pj+2

pj+1
· · · pj+k

pi+k−1

)
= log

(
pj+k

pj

)
pi+1

pi
pi+2

pi+1
· · · pi+k

pi+k−1
=

pi+k

pi
,

where the inequality follows from log-concavity applied to each term of the sum.

(ii) Rewrite (i) as:
pjpi+k − pipj+k ≥ 0.

Then,

m−j∑
k=1

(
pjpi+k − pipj+k

)
≥ 0

pj

(
m−j+i∑
k>i

pk

)
− pi

 m∑
k>j

pk

 ≥ 0

pj

(
m∑
k>i

pk

)
− pi

 m∑
k>j

pk

 ≥ 0.

This establishes the lemma. □

While the previous lemma should be well-known, we were unable to locate a complete
treatment of the finite case in the literature.

Lemma B2 Under Assumption 2, φi+1 < φi for all i = 1, ...,m− 1.
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Proof. We have:

φi+1 < φi

⌈κ(i+1)⌉+
∑n

j>i+1 p
j

pi+1
< ⌈κ(i)⌉+

∑n
j>i p

j

pi

follows directly from ⌈κ(i+1)⌉ < ⌈κ(i)⌉ and Assumption 2. □
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