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Abstract

In contract design, a payoff-maximizing principal trades off social surplus
for lower information rents. Imagine that the principal is able to influence the
distribution of agent types; a monopolist can invest in marketing campaigns to
boost demand, and a procurer can invest in expanding their search hoping to
attract more-efficient contractors. Changes in the type distribution that generate
more social surplus, however, may not be profitable for the principal if they lead
to even higher information rents. When is a social improvement in the distribution of
agent types also profitable for the principal when accounting for the impact of information
rents?

In the context of linear utilities/costs, while the increasing convex order
(resp., SOSD) establishes monotonicity of the social surplus when the agent is
a buyer (resp., contractor), it is insufficient for private payoffs. We show that
FOSD guarantees monotonicity of the principal’s expected payoff—even if the
superior distribution needs to be ironed.
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1 Introduction

A monopolist can invest in a marketing campaign to boost demand. If the buyer’s
reservation price is private information, a demand boost can take the form of a shift
in the distribution of reservation prices: Ads may lead to shifting probability mass
to higher values, or expanding the support upwards. Alternatively, a buyer seeking
to procure from a contractor with private costs can invest in expanding the call for
bids in the hopes of attracting more-efficient contractors.

In such contract-design problems, a payoff-maximizing principal trades off social
surplus for lower information rents. Changes in the distribution of agent types may
increase the social surplus generated, but they could also raise the amount due the
agent in information rents. When is a social improvement in the type distribution also
profitable for the principal when accounting for the impact of information rents?

In this note, we address this question in the context of a monopoly setting where
the agent has linear utilities, and then adapt the main result to the procurement
setting with linear costs. While the increasing convex order (resp., second-order
stochastic dominance) corresponds to social improvements in the monopoly (resp.,
procurement) context, a stronger stochastic order is needed for the private and social
benefits to align. We show that the principal’s payoff is monotonic under first-order
stochastic dominance—even if the dominant distribution leads to a binding monotonicity
constraint, and thus entails ironing (Myerson, (1981).

The rest of the paper is organized as follows. We start with a monopoly example
in Section [2} Section [3| describes the monopoly setting (subsection [3.T), discusses the
first-best benchmark (subsection[3.2), and shows the monotonicity result for expected
profit (subsection 3.3). In section [, we adapt the result to the procurement setting.
Finally, section 5| concludes.

2 Monopoly Setting

A widget manufacturer (she) produces and sells 4 > 0 widgets to a consumer
(he) in exchange for payment t > 0. The cost of manufacturing widgets if given by
c¢(q) = %, and so the seller’s profit is 7t(t,q) =t — g The consumer’s valuation for
widgets v is drawn uniformly from [0, 1], and his payoff from trading with the seller
isu(g,t,v)=v-q—t.

Assume first that the consumer’s valuation is publicly known. In this case, the

seller can extract all of the consumer’s surplus (his outside option being 0) and



produce efficiently: q*(v) = v. Thus, expected maximum profit, IT*, equals expected

maximum social surplus, W*:

Imagine now that the seller can spend in advertising to boost the widget demand. As
a result, the distribution of valuations shifts from cdf F(v) = v to F(v) = v?. While
the change in distribution does not affect the allocation rule g*(v), it yields higher
maximum profit/surplus:
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As long as the cost of the ad campaign is under ; ~ 0.0833, the resulting demand
boost is profitable.

But the widget manufacturer cannot observe her customer’s valuation; she has to
incentivize him through information rents. A buyer with valuation v commands rent
in the amount of [ g(x)dx. Trading off surplus for information rent, the seller now
produces widgets according to the allocation rule g*(v) = max{2v —1,0}. Under the
uniform distribution, her expected profit is:
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Under the shifted distribution, the new structure of information rents leads to the

new production rule g*(v) = max {37” — =, O} ; the corresponding profit is:
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For the campaign to remain profitable, the cost must be under 121“5# ~ 0.0539.
Now, let the valuation v be drawn from a Beta(5,5) distribution, and the seller
can invest in shifting said distribution to a Beta(4,4). With valuations being publicly
known, expected maximum profit is:
1 42

3
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IT" = .2 (1—0)*dv 7 0.1364



before the campaign, and:
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afterwards. The campaign is profitable provided its cost is under ﬁ ~ 0.0025.

Under asymmetric information, the allocation rules under the two distributions
are presented in Figure [ll The corresponding maximum expected profits are IT* ~
0.07139 under the Beta(5,5) distribution and IT* ~ 0.07108 for v ~ Beta(4,4). Even
if the campaign were free of charge, this boost in the demand for widgets leaves the
seller worse off.
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Figure 1: Allocation rules g*(v) for v ~ Beta(5,5) (blue) and v ~ Beta(4,4) (red).

In both scenarios, the shift in the distribution constitutes a social improvement—
provided that the cost of switching is small enough. As such, they are also profitable
for the seller under symmetric information. However, asymmetric information forces
the seller to grant some rents to the consumer, which lead her to distort the allocation
rule. The shift in the distribution of valuations increases the buyer’s information
rents and allocation distortion. In the second scenario, this effect dominates, leading
to lower profit for the seller. Thus, the social improvement is privately costly.

As we show below, the difference in the two scenarios driving the result is that
the first “distribution improvement” is an improvement in the sense of first-order
stochastic dominance, while the second one is in the weaker sense of the increasing

convex order.



3 Monopoly Setting

3.1 Environment

We expand on the monopoly setting from the example in Section[2l A monopolist
(the principal, she) produces and sells quantity g > 0 of her product to a consumer
(the agent, he) with valuation given by v > 0 in exchange for payment t > 0. The cost
for the principal to produce g units is given by c(g), a strictly increasing, concave,
and twice-differentiable function.

There is a parametric family of probability distributions for the agent’s valuation,
F = {Fy(v) : 6 € ®} for some parameter space ©, with Fy(v) denoting the cdf of
the distribution identified by 6 € ®. We assume that, for each 6 € ©, Fy is absolutely
continuous and has full support on some interval Vy := [vg, 7y], where 0 < vy < Ty,
with pdf fp(v).

Given 6 € O, the principal’s problem is to design an implementable mechanism
consisting of an allocation function q : Vy — [0, B], where B > 0 is a (fixed) capacity
constraint, and a transfer function ¢ : Vy — R to maximize their expected profitﬂ

[(g,4,6) := [ 7(t(0),9(0))fa(0)do.

0

If we let M denote the space of implementable mechanisms, we are interested in
the behavior of the function IT* : ® — R given by:

I1°(0) := sup({Il(q,t,0) : (q,t) € M}).

Let 77 denote an order on F; slightly abusing notation, we identify - with its
projection on ® and write 6 7 6 for Fy 7= Fy. The goal is to find an order /7 on ©

such that IT*(0) is non-decreasing.

3.2 First Best and the Increasing Convex Order

If the agent’s type, his valuation v, is publicly observed, the principal can extract
all of the agent’s surplus through the payment by setting (v) = v - q(v). Thus, the
monopolist’s profit equals the social surplus, and the optimal allocation rule is the
first-best allocation rule, 75 (v) := (c’)~1(v).

IWe omit indexing the mechanism (g,t) by 6; nonetheless, the optimal mechanism will depend
on 6, and the latter dependence will be made explicit.
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Define the social surplus function w : [0,B] x Ry — R as w(q,v) :=v-q—c(q),
and the maximum social surplus function w* : Ry — R as w*(v) := w(q'8(v),0).
Then,

T1(g,t,60) = /

Vo

w(q(0), ) fo(o)do < [ w' (o) fo(o)do =2 W*(6),

where W* : ©® — R is the expected maximum social surplus function. It follows that
I1*(#) = W*(0). Notice that w* (v) = (¢/)~1(v), which makes w*(v) non-decreasing
and convex. Thus, monotonicity of W*(6) is ensured under the increasing convex
order.

Definition (Shaked and Shanthikumar, 2007). For any 6,6’ € ©, #’ dominates 6 in the
increasing convex order (ICx), 68" - jcy 6, if for any non-decreasing and convex function
¢ : R — R, the expectation of ¢(v) under 6’ is at least as high as under 0:

/V, ¢ () for (v)dv > /V, ¢(0) fo (v)do.

0 0

Intuitively, if 8" ZZjcyx 6, then the distribution identified by 6’ has both a higher
mean and a higher variance than its 6 counterpart. Thus, the former has more mass
on more extreme types in a way that raises the surplus. This order is the convex
counterpart of second-order stochastic dominance. Shaked and Shanthikumar (2007)
shows that 6’ 7 6 if and only if:

1 1
/Z)(l—Pg(x))dxg/ (1— Fy(x))dx (1)

[

for every v € R (Theorem 4.A.2).

It is immediate to see that if 8’ first-order stochastically dominates 6, which we
denote by 0" Zro 6, then 6’ ¢, 6. Thus, W*(0) is also non-decreasing under = ro,
as illustrated in the examples below.

Example 1. The monopolist’s cost function is ¢(g) = @. Take ® = [1,2] and let 6 € ©
identify the uniform distribution on Vp = [0,6]: Fy(v) = § and fs(v) = §. Here,

0’ > 6 if and only if 8’ ’~ro 0, and so 6’ =;cx 6. We have "8 (v) = v, w*(v) = %2, and:

T (0) = W0) = | & -do=".



Thus, W*(8) is strictly increasing. A

Example 2. For the same monopolist, take now ® = (—1,1] and, for each 6 € ©,
let Vy = [0,1] and Fy(v) = o' Again, 8 > 0 if and only if 8’ >Zrp 6. Maximum
expected profit is:

1y? 1+6
6+20

which is also strictly increasing.

Example 3. Consider now the parameter space ® = (1,+c0). For each 6 € O, let
1

Vo = [0,1] and Fyp(v) = 1 — (1 —v)71. Notice that, for 6 = 2, this is simply the

uniform distribution. As in the previous examples, 8’ > 6 if and only if 6 Zfo 6.

Now,

2—
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See Figure A
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Figure 2: Curve for W*(6) in example

3.3 Private information and FOSD

When the agent’s type is his private information, the principal must award him

information rents. For every 6 € ©, implementability consists of the usual incentive
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compatibility and participation constraints, which are equivalent to the following
conditionsf]

e Forevery v € Vp, U(v) = f;; g(x)dx;
* The function g : Vy — [0, B] is non-decreasing.

With this characterization, we can write the principal’s expected profit in terms of

the allocation rule alone:

11(3.0) = [ [uo(0) q() — c(9(0))] fo(o)do,

where ug(v) = v — 1}9%()0 ) is the agent’s virtual utility.

This last expression highlights the efficiency-rent trade-off that the principal faces:
Generating more surplus can be profitable, but it can also mean more information
rents for the agent. We can highlight this point by rewriting the expected profit
formula as follows:

0, 59
(9,6) = [ " w(q(0),0)fp(0)do — [ (1= Fa(@))a(0)do.
Yo Yo
Given an allocation rule g(v) and provided that the function w,(v) := w(q(v),v)

is non-decreasing, 6’ Zro 6 implies both a higher expected surplus but also higher
information rents: 1 — Fy(v) > 1 — F(v).

For any given 6 € O, if Fy(v) is regular (i.e., if ug(v) is non-decreasing), then
the monotonicity constraint in the principal’s maximization problem can be safely
omitted. In this case, we find the optimal allocation rule by maximizing pointwise,
leading to:

76(v) = ()" (max{uy(0),¢'(0)}) (2)
If the regularity assumption fails, the optimal allocation rule is found by replacing
ug(v) in @) with 7ig(v), the ironed virtual utility (Myerson, 1981).
Thus, letting ily equal ug if 0 is regular and i1y otherwise, the principal’s maximum
expected profit is:

6) = [ [fo(0) 43 (0) — c(ai(@)] foe)do

2Gee, for instance, Dewatripont and Bolton| (2005); Krishna| (2010); |[Laffont and Martimort, (2001).
Notice that we are already imposing the condition U(vy) = 0.
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Recall the function w*(x) = (/)" }(x)-x —c((c)"!(x)) and define the function
z(x) := max{x, ¢’ (0)}. Both of these functions are non-decreasing and convex. They
allow us to rewrite maximum expected profit as:

I(6) = [ (" 02) (0(0)) fo(0)d.

Notice that w* o z is also non-decreasing and convex.

Example 1 (Continued). For the family of uniform distributions U[0,6], we have
up(v) = 2v — 6. Maximum expected profit is:

. (20 —0)%1 62

2

Thus, IT*(0) is strictly increasing and strictly convex. A

Example 2 (Continued). For this family of distributions, the virtual utility is given

by ug(v) = %, which is strictly increasing. Defining Ag := (2 + 0)71%9, we
have:
1-6
11 [(240)0+0 — 1] ) 146 1 \17
@)= [ = 1+6)v"do = 1—(—— .
(6) //\92[ (1+0)0° ] (1+6)7"dv = 557 3) (2+9>

Figure 3| depicts the curve of IT*(0). A

Example 3 (Continued). This family of distributions has affine virtual utilities: ug(v) =
fv — 6 4+ 1. Maximum expected profit for the monopolist is given by:

0

IT°(0) = (6 —1)0#1

Figure 4] shows the IT*(9) curve. JAN

For a given parametric family of distributions, even if virtual utilities are convex,
the argument that establishes that W*(6) is non-decreasing with respect to 2Z;c, does
not apply: The function w* oz o ily changes with 6, reflecting the distortion in the
allocation resulting from the distribution-specific structure of information rents. In

fact, as seen in Section 2} the result is no longer true.
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Figure 4: Curve for IT*(6) in Example

Example 4 (Section2). Let © = {1,2}, with § = 1 being a Beta(5, 5) distribution and
6 = 2 being a Beta(4, 4) distribution. By (1), it can be checked that 2 7Z;c, 1. However,
our monopolist with cost function ¢(g) = % finds 6 = 1 to be more profitable than
6 = 2: TT*(1) ~ 0.07139 > 0.07108 ~ IT*(2). A

In the earlier three examples, all maximum expected profits are non-decreasing
in 6. As anticipated in Section 2} the key is that the families of distributions in said
examples are ordered under Zro: 6’ > 0 if and only if 6/ ZZpp 6. It turns out that
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7 ro is sufficient: Theorem [1] below shows that IT*(6) is non-decreasing with respect
to 6’ ~ro 0.

To prove the theorem, it is convenient to change variables following Bulow and
Roberts (1989): x := 1 — Fy(v), vg(x) := Fe_l(l — x). Notice that x has a uniform
distribution on [0, 1] and that vg(x) is non-increasing. Next, define Ry(x) := x - vg(x).
This expression is analogous to a monopoly revenue formula, with x playing the role
of quantity and vy(x) playing the role of inverse demand. We have that Rj(x) =
ug(vg(x)) and:

I1*(0) = /Ol(w* oz) (R)(x)) dx

if 6 is regular. Otherwise, Myerson'’s process of ironing entails replacing Ry (x) with
its concave envelope, Ry(x):

Ry(x) :=inf ({r(x) : r:[0,1] — R is concave, V¥ € [0,1] (r(X) > Ry(%))}).

By construction, Rgy(x) is concave, so it is differentiable almost everywhere. Here,

1T (0) = /0 (w0 2) (Ry(x) dx.

Theorem 1 (Monotonicity, monopoly setting). The maximum expected profit function
I1*(0) is non-decreasing under 2~ ro.

Proof. We start with the case in which both distributions are regular. Pick any 6,6’ €
O such that 0’ =~ 6; we have vy (x) > vg(x) for all x € [0,1]:

Fo(vg(x)) =1—x = Fy(vg (x)) < Fy(vg (x)).

Thus, since Ry (0) = Ry(0) =0,

[ Rot)dy = Ror) = Rox) = [ Ry(y)dy.

Regularity means that Ry (x) and Ry(x) are concave. Dominance means that Ry (x) >
Ry(x) for all x € [0,1]; or, alternatively, that Ry weakly submajorizes Ry (Hardy,
Littlewood, and Pélya, 1952; Marshall, Olkin, and Arnold, 2011)@ An extension of
the Hardy-Littlewood-Pélya inequality from Chong) (1974) (Theorem 2.3) states that

3For non-decreasing functions, their decreasing rearrangement yields the original function.
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Rgr(x) > Ry(x) is thus equivalent to the condition that:

1 1

/ h (Ry(x))dx > / h(Ry(x)) dx
0 0

for all non-decreasing and convex functions / : R — R. Since (w* o z) satisfies said

properties, the result follows:

() = [ (@ 02) (Rp () dx > [ (@' 02) (Ry(x)) dx = 11°(0).

If one or both of the distributions is not regular, the corresponding virtual utility
must be ironed. We start with the case where 6 is regular but ¢’ is irregular. We
have that Ry (x) > Rgy(x) > Ry(x) for all x € [0,1]. Since Ry(x) is concave, it is
differentiable almost everywhere and—along with the fact that Ry(0) = 0—we have
that:

Ro(x) = [ Ri(y)dy.

Thus, Ry (x) weakly submajorizes Ry, and the rest of the argument follows as above.
If 6 is irregular but 6’ is regular, weak submajorization follows from the observation
that Ry (x) is in the set that defines Ry(x), so Ry/(x) > Ry(x) for all x € [0, 1]. Finally,
combining the two cases tackles the case when both 6 and 6’ are irregular.
Alternatively, following Roughgarden and Schrijvers| (2015), ironing the virtual
utility is equivalent to replacing the irregular distribution Fy with a regular one Fy
such that: (1) Fy Zro Fy; (2) The ironed virtual utility for Fy is identical to the
virtual utility for Fy; and (3) The expected profit given the ironed allocation rule
under Fy and Fy are equal. The Lemma in the appendix shows that, for any regular
type distribution G, Fy ZZpo G implies Fy 7o G and G Zro Fy implies G Zro Fy.
Thus, the previous argument applies, and it can be easily adapted to when Fj is the

irregular distribution, or when both are irregular. O

4 Procurement Setting

This section reverses the roles: The principal is now the buyer and the agent is the
producer whose type, c, represents his marginal/average cost. The principal enjoys a

utility u(q,t) = v(q) — t, where v(g) is strictly increasing, strictly concave, and twice
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continuously differentiable. Now, expected social surplus and principal’s payoff are:

Wig.0) = [ v(a(c) — ()] fole)de

Cp

P@,0) = [ (a() ~o(e) -4(0)] fole)eke

where ky(c) = c+ fo(d) js the agent’s virtual cost.

fo(c)
The first-best allocation rule is g75(c) = (v')~!(c), which is non-increasing. We

now say that a type distribution is regular if ky(c) is non-decreasing. Writing kq(c)
for kg(c) if 0 is regular and for the ironed virtual cost kg(c) otherwiseﬁ

9a(c) = (v') " (max {ke(c),v'(0) }) -

The maximum social surplus given c is w*(c) := v (¢"8(c)) — ¢~ qF B(c), which is
non-increasing and convex. To establish monotonicity of W*(0) := f *(c)fo(c)dc
we invoke second-order stochastic dominance, - SOE Since the funct1on —w*(c) is
non-decreasing and concave, 8’ 7 6 implies that:

Co
[ @laode > [ @it
Lo
or W*(6') > W*(6). Thus, W*(6) is non-increasing under 7 s0.

Denote the principal’s maximum expected payoff as P*(0); we have:

P*(8) = /0 "(w 02) (Falco(x)) dx.

Example 5. Let © = [0,1] and let 6 € © represent the uniform distribution on [0, 2]:
Fy(c) = £5. We have kq(c) = 2c — 6, so all the distributions in the family are regular,
and 6’ > 0 means 0’ o 6. The principal’s utility is v(g) = 100 — ¢* (assuming that
q < 100), so g;(c) = 100 — 2c + 6. The principal’s maximum expected payoff is:

6> — 40 4 28,816

21 1
P*(6) :/9 5+ (100~ 20+ 6)? - -—dc = - ,

which is decreasing.

“The procurement setting is a separable case in the sense of Toikkal (2011).
5In[Shaked and Shanthikumar| (2007), this order is called the increasing concave order.
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The counterpart of Theorem 1is below.

Theorem 2 (Monotonicity, procurement setting). The maximum expected payoff function
P*(0) is non-increasing under 0.

Proof. Assume first that 0,6’ are regular distributions. We can write the principal’s

maximum expected payoff as:

P*(6) = /Olh (—ko(co(x))) dx,

where h(y) := (w* oz)(—y) for y < 0. Since w* o z is non-increasing and convex,
h is non-decreasing and COHVGXH For 6 ZZro 0, we have Ry(x) := x-F, Yx) >
x - F;1(x) =: Ry(x). We have that Rj(x) = kg(cp(x)) > 0 and similarly for ¢’, so:

| Ry = [ Ryw)ay

| =Re)ldy < [ [-Ry(w)ldy.

By the same argument as in the main theorem, it follows that:

1 1
PH(0) = / i (—R)(x)) dx < / I (—R)(x)) dx = P*(0).
0 0
If ironing is needed, we simply replace Ry(x), Rg/(x) with their convex envelope, as
in the proof of Theorem[I] Thus, the result follows. O

5 Conclusion

In this note, we raise the question of how a change in the distribution of the
agent’s type impacts the principal’s expected payoff. In particular, we consider when
a “social improvement” in the type distribution is also “privately” beneficial for a
principal trading off social surplus for lower information rents.

As with externalities, information rents mean that socially-beneficial shifts in the
distribution of agent types may lead to a drop in the principal’s expected payoff. The
increasing convex order (resp., second-order stochastic dominance) corresponds to

social improvements in the monopoly (resp., procurement) context, but a stronger

6 Although w* in this section is not isotone, the composition w* o z is constant on (—co,0) and
equals w* on [0, +00).
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order is needed for the private and social incentives to align. First-order stochastic
dominance does the trick—even when the dominant distribution entails ironing.
Avenues for future research are extending the results for the cases where the

agent has quasilinear utilities/non-linear costs, and in dynamic mechanisms.

A Appendix

The lemma below establishes some properties of the “ironed” distribution from
Roughgarden and Schrijvers| (2015). For the sake of completeness, we include the
construction of said distribution and some of its basic properties expressed in our
setting.

Lemma (Ironed distributions). Let F be the cdf of an absolutely continuous and full-
support distribution on an interval [v,D]. There exists an absolutely continuous, full-support,
and reqular distribution F on [v, 7| such that:

1. F o F and F = F outside of the bunching interval;

2. The ironed virtual utility for F, ip(v), equals the virtual utility for F, up(v);
1 5 1

3. [y (hoz)(R'(x))dx = [, (hoz) (Ry(x))dx;

4. For any regular type distribution G, F Z_ro G implies F 7 ro G;

5. For any regular type distribution G, G Zro F implies G Zpo F.

Proof. Take R(x) and its concave upper envelope, R(x). Define 7(x) : [0,1] — [v, 7]
as o(x) = @ for x > 0 and 7(0) := lim,_,o+ @ Since R(x) > R(x), we have
that o(x) > v(x), with equality outside the bunching interval [x;, x;], where x; =
1—F(v1) and x, = 1 — F(v2). Moreover, 3(x) is of the form m + Z—since R(x) is
affine—on the bunching interval, where b > 0 and where m > 0 is the ironed value

of the ironed virtual utility. Define F as the cdf whose quantiles correspond to 7(x):
Flv)=1—inf({x€[0,1] : v >7(x)}).

To show [T} notice that the inequality 7(x) > v(x) implies {x € [0,1] : v > T(x)} C
{x €10,1] : v > v(x)}, and so:

inf({x€[0,1]:0>7(x)}) >inf({x €[0,1] : v >7(x)}) =1— F(v).
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So, F(v) <1—(1—F(v)) = F(v). Next, take any v outside of the bunching interval;
for the corresponding x = 1 — F(v), we have that 7(x) = v(x), so the result follows.
To establish 2, we need only to look at the bunching interval, where 7(x) =
b

m + % Thus, the inequality v > o(x) can be rewritten as x > _~, since v > m

on the bunching interval (due to downward distortion). Thus, F(v) = 1 — #
Straightforward computation shows that uz(v) = m = ur(v).

Part (3| is a special case of a result in Myerson| (1981), although in the present
context it is an immediate consequence of the fact that R'(x) = R'(x) for every
x € [0,1].

For [4] let G be the cdf of a regular distribution that G Zro F. Regularity implies
that Rg(x) is concave, while dominance implies that Rg(x) > R(x) for every x €

[0,1]. Thus, Rg(x) > R(x), which implies that G ZZro F.

For 5| let G be the cdf of a regular distribution such that F 7Zpp G. Then, R(x) >
Rg(x) for every x € [0,1], so R(x) > Rg(x) follows immediately from O
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