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Abstract
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This distinction, largely overlooked in the literature, has tangible implications for
management. Statistical spillover is consistent with decentralized, case-by-case
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1 Introduction

Choosing a portfolio of projects is a central managerial problem. In corporate

strategy, managers must decide which business units or divisions to establish within

their firms, and which alliances or acquisitions to pursue. At a more disaggregate

level, division managers must decide which R&D projects or marketing campaigns

to greenlight, and venture capitalists must decide which businesses to support.

Our paper analyzes the problem of selecting a portfolio from a pool of projects

under a research budget and allowing for value spillover across projects. Projects

must be selected at the interim stage, where the manager possesses some preliminary

information about their profitability (preliminary reports, expert assessments, peer

reviews, etc.) but before their value is fully realized. This timing allows us to make

a distinction between two types of spillover that has been largely overlooked in the

literature: managerial spillover, whereby the appreciation of a project leads to the

appreciation of other projects under the same management structure due to common

managerial resources or real assets; and informational or statistical spillover, whereby

preliminary reports about the profitability of a project convey information about the

profitability of other projects.

Some examples may help shed light on this distinction:

• A farmer is considering whether to buy one or two neighboring plots of land. If

one of the plots is sufficiently large to make it profitable to invest in large, powerful

farm equipment, the same equipment can be employed to extract more value out

of the neighboring plot; this is a managerial spillover. At the same time, analyzing

the chemical composition of the soil in one plot to predict its fertility will shed

information on the fertility of the neighboring plot, as proximity implies similar soil

properties; this is a statistical spillover.

• A drilling company is interested in bidding for one or two neighboring oil

tracts. Proximity of the tracts can help the company mobilize resources across oil

platforms (managerial spillover) and makes findings on the properties of the soil

in one tract informative about the likelihood of finding oil in the neighboring tract

(statistical spillover).

• An investor is looking to fund two development projects in the same area.

Proximity allows the investor to mobilize construction equipment and labor across

projects (managerial spillover), while news about the real estate market gathered

from analysis on one project is useful to assess the other one (statistical spillover).
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• A pharmaceutical company is evaluating research on two alternative treatments

for a disease. Treatment A is based on the hypothesis that the disease is bacterial,

while treatment B, that it is viral. Lab equipment and staff can be shared across

the two research teams (managerial spillover). A successful trial from treatment A

is good news about it but bad news about treatment B, and viceversa (statistical

spillover).

While this understudied distinction might seem subtle, it has tangible managerial

implications. We show that, under statistical spillover, projects can be assessed on

a decentralized, case-by-case basis, and undertaken autonomously (given budgetary

approval) as long as information flows freely across divisions. If relevant preliminary

findings are shared across all units, each unit can assess and carry out their own

project (if approved). Capturing managerial spillover, however, requires that the

projects be undertaken within the same management unit and be assessed in blocks:

The combined savings from passing on two projects at once may outweigh their

marginal contribution; individual assessments can be misguiding.

While an important portion of the management literature overlooks managerial

spillover (Arora and Gambardella, 1994; Adner and Levinthal, 2004; Trigeorgis and

Reuer, 2017), there is a rich line of work that accounts for such spillover. Fox et al.

(1984) analyzes projects whose present value have a non-linear impact on profit;

however, profit impacts are deterministic. Moreover, they exclude statistical spillover,

as successes or failures are independent across projects. Ghasemzadeh et al. (1999)

specifies a linear profit and accommodates value spillover as precursor/successor

constraints on project choice. Dickinson et al. (2001) represents project dependency

by means of a (not necessarily symmetric) square matrix; the value of a portfolio

and projects’ interactions are additive and deterministic. Liesio et al. (2008) represents

project dependency by introducing dummy projects with value and cost given by

the value and cost interaction across projects. While this approach can accommodate

specific spillovers across a small number of projects, the number of dummy projects

needed to account for the more global managerial spillover grows exponentially with

number of projects under consideration.

Statistical spillover has received far less attention in the literature and is largely

understudied. Arora and Gambardella (1994) stresses the importance for industrial

research of generalized and abstract knowledge, the type of knowledge with multiple

applications. Loch and Kavadias (2002) studies a multi-period, multi-product firm

under uncertainty about the market conditions for their different products. They

allow for correlation across market conditions (Proposition 4), but their analysis is
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carried out from the point of view of time 0, the ex-ante stage. Thus, all expectations

are unconditional. To assess statistical spillover, managerial decisions must be made

at the interim stage, conditional on preliminary or noisy information.

The paper is organized as follows. The next section presents the general problem.

To shed more light on the managerial implications of the two types of spillover, we

isolate statistical spillover in section 3 and managerial spillover in section 4. Section

5 extends the analysis in section 4 to accommodate asymmetric value distributions.

Section 6 concludes.

2 The General Problem

There is a pool of n projects, denoted by N = {1, . . . , n}. The individual present

value (PV) of undertaking project i is denoted by vi ∈ [vi, vi], where vi > vi ≥ 0;

project i’s cost is ci > 0. Given a profile of project values v = (v1, . . . , vn), if project

portfolio A ⊆ N is chosen, the ex-post profit for the general manager is given by:

Π(A, v) := ∑
i∈A



vi



1 + θ ∑
j∈A\{i}

vj



− ci



 , (1)

where θ > 0 is the degree of managerial spillover (MS) between projects. Handling

projects in house, with shared managerial resources, adds an interaction effect to the

projects’ value; θ captures the degree of this interaction.

The specification in (1) is inspired by the model of knowledge accumulation of

Cohen and Levinthal (1989) and the synergy specifications of Fox et al. (1984) and

Loch and Kavadias (2002). Projects spill their PV over to other projects’ PV. This

effect is proportional, so spillover can increase the revenue from a successful project

but cannot cause an unsuccessful project to succeed: If a project always yields a gross

value of 0, no amount of spillover from other projects will change that.

There’s uncertainty about projects’ PV’s. Unless otherwise stated, we allow for

PV’s to be correlated across projects; this is the source of statistical spillover (SS).

Two neighboring farms will have similar yields based on similarities in their soil

properties; the state of the real estate market will affect two neighboring development

projects.

Portfolios must be chosen before PV’s are realized, on the basis of preliminary

information from experience with similar projects, research trials, peer reviews or

reports, etc., and speak to how promising a project is. We denote project i’s signal by
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si ∈ [si, si], where si > si ≥ 0. Given vi, si is drawn from the conditional distribution

with pdf fi(si|vi).1

Employing Bayes’ rule, we compute the posterior distribution of the value of the

projects given the signals. Since we allow for correlation of PV’s, the signals are

generally not independent under their unconditional distribution. For each i, given

a profile of signals s = (s1, . . . , sn), define the function φi(s) that gives the expected

value of project i given the signals: φi(s) = E[vi|s]. Our SS is the dependence of φi(s)

on s−i, where s−i is the profile of signals for projects other than i. If two projects are

positively correlated and we get a high signal from one but a low signal from the

other, the latter’s low signal puts a damper on the optimism from the former’s high

signal (and viceversa). A low productivity outcome from a farm can be attributed

to a bad weather draw or contained pest (and thus discounted) in light of a high

productivity outcome from a neighboring farm with similar soil and technology.

On the other hand, if the projects are negatively correlated, the low signal from

the second project is even better news about the first one. In our pharmaceutical

example, a failed trial for treatment A is good news for treatment B.

Thus, a project’s signal can be relevant about other projects’ value even in the

absence of MS. Of course, under independence, φi(s) is a function only of si: φi(s) =

φi(si).

Loch and Kavadias (2002) allows for MS to be project-pair specific. In our setting,

this parameter is not project specific but “manager specific.” We can account for

project-pair specific synergies through correlation between PV’s. However, project-

pair specific MS parameters cannot capture our SS.2

We assume that, for each i, the signals (vi, si) are affiliated. This means that higher

project values are more likely given higher signals. In other words, a high signal is

good news about the value of the corresponding project. We assume that it is in fact

strictly good news, in the sense that φi(si, s−i) is strictly increasing in si for every i.

Assumption (Information structure). PV’s v1, . . . , vn are random variables; signals

s1, . . . , sn are continuous random variables, each si drawn conditional on vi; for each

i, φi(si, s−i) is strictly increasing with respect to si.

1The assumption that the distributions of signals are continuous is made for simplicity of the
exposition; continuous distributions allow us to ignore the possibility of ties. Discrete distributions
can be accommodated in the analysis.

2As indicated in (2) below, the MS term between projects i and j is θE[vivj|s]. If we define θij(s) :=
θφi(s)φj(s)E[vivj|s]−1, this term becomes θij(s)φi(s)φj(s). However, the SS remains insofar as φi(s)
depends on sj, and viceversa.
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Let B > 0 be the manager’s research budget. Given a profile of signals s =

(s1, . . . , sn), the manager chooses a project portfolio A ⊆ N in order to maximize

interim-expected profit (given the projects’ signals):

π(A, s) : = E [Π(A, v)|s] = ∑
i∈A

[φi(s) − ci] + θ ∑
i∈A

∑
j∈A\{i}

E[vivj|s] (2)

subject to the constraint ∑i∈A ci ≤ B.

Example 1. A manager has n = 4 projects for consideration. Each project i can either

be successful, in which case vi = 1, or a dud, in which case vi = 0. The projects are

independent, and their signals s1, . . . s4 ∈ [0, 1] are their probability of success; here,

φi(si) = si. Given costs and θ, the profit from selecting portfolio A = {2, 4} is:

π(A, s) = s2 − c2 + s4 − c4 + 2θs2s4.

Example 2. Assume now that the projects’ values are independently and uniformly

distributed on the interval [0, 1], and that, given vi, signal si is distributed uniformly

on the interval [0, vi]. Then, φi(si) = si−1
ln(si)

. The profit from selecting portfolio A =

{2, 4} is now:

π(A, s) =
s2 − 1
ln(s2)

− c2 +
s4 − 1
ln(s4)

− c4 + 2θ
s2 − 1
ln(s2)

s4 − 1
ln(s4)

.

Example 3. There are two projects. With probability 1
2 , v1, v2 are drawn from a

uniform distribution on [0, 1], and with probability 1
2 , from a uniform distribution

on [0, 2]. PV’s above 1 can only come from the second distribution; but values below

1 are consistent with both distributions. Given vi, signal si is uniformly drawn from

[0, vi]. Imagine that 1 ≥ s1 > s2; then,

φ2(s1, s2) =
−5 ln(s1)(1 − s2) + ln(2)

5 ln(s1) ln(s2) − ln(2) ln(s1) − ln(2) ln(s2) + ln(2)2 .

If, instead, s1 > 1 > s2, we get:

φ2(s1, s2) =
2 − s2

ln(2) − ln(s2)
= φ2(s2).

For instance, if s2 = 0.4 and s1 = 0.9, we get φ2(s1, s2) = 0.6039; but if s1 = 1.4 > 1,

we know that both PV’s are drawn independently from the uniform distribution on
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[0, 2], that the low s2 is simply a “bad draw,” and so φ2(s1, s2) = 0.9941 — even if the

signal s2 is the same, the higher s1 is good news about both PV’s and puts the lower

s2 into perspective.

There are two effects that our framework omits. (1) As our analysis is static in

nature, we do not allow managers to learn from past “mistakes” when a project’s

realized PV is lower than expected. (2) Low-profit projects may be valuable if they

provide know-how for managers to help other projects succeed. Nonetheless, the

latter can be captured in essence as negative correlation across projects.

The next lemma establishes that the general manager’s problem is a well-behaved

programming problem.

Lemma 1. The increment in profit from adding a project is larger the larger is the underlying

portfolio. Formally, for each signal profile s, π(A, s) is supermodular in A: For any two

A ⊆ B ⊆ N and any j /∈ A, π(B ∪ {j}, s) − π(B, s) ≥ π(A ∪ {j}, s) − π(A, s).

However, finding the optimal portfolio can be cumbersome. We can form 2n

portfolios from a pool of n projects; with only 10 projects on the table, we have 1,024

portfolios to assess. In fact, the manager’s problem of maximizing interim-expected

profit subject to the budget constraint is NP hard. Lemma 1 allows this problem to be

solved as a size-constrained supermodular maximization problem; see, for instance,

Nagano et al. (2011).3

Proposition 1. Consider the set of possible sizes of affordable portfolios, NB := {|A| : A ⊆

N, ∑i∈A ci ≤ B}. For each k ∈ NB, given a profile of signals s, consider the problem of

maximizing π(A, s) subject to the constraint |A| = k, and let A∗
k (s) be a solution to this

problem. Then, a solution to the manager’s problem, A∗(s), is given by the most profitable

A∗
k (s) across k ∈ NB: A∗(s) = arg max{π(A∗

k (s), s) : k ∈ NB}.

In what follows, we isolate the impact of SS and MS in turn to shed further light

on their managerial implications for portfolio selection.

3 Isolating Statistical Spillover

We start by considering the benchmark with no MS, namely the case with θ = 0.

Here, expected profit is additively separable across projects: For each A ⊆ N and

3Nagano et al. (2011) analyzes the equivalent problem of minimizing submodular functions.
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signal profile s,

π(A, s) = ∑
i∈A

[φi(s) − ci].

As previously noted, we can have SS without MS. If two projects are correlated,

their signals are informative of both of them. While expected profit reduces to the

sum of expected net PV’s, each of these expectations is conditional (in principle) on the

entire profile of signals.

The following notation will be useful. Given a profile of signals s, let i1 be the

index of the project with the highest expected net PV: φi1(s) − ci1 = max{φi(s) − ci :

i = 1, . . . , n}; similarly, let ik for k = 2, . . . , n be the index of the project with the k-th

highest expected net PV.4

The next proposition characterizes the optimal portfolio in the SS benchmark: We

want to undertake the most-promising projects we can afford, assessing each project’s

net PV based on the signals of all other (relevant) projects.

Proposition 2. Assume that θ = 0, so that there are no managerial spillovers. Given a

profile of signals s, define k(s, B) = max{k = 1, . . . , n : φik(s) > cik and ∑k
j=1 cij

≤ B}.

Then, A0(s) :=
{

i1, . . . , ik(s,B)

}
is the optimal project portfolio.

Example 1 (Continued). Project i’s net PV is si − ci, its probability of success net of

its cost. Assume that c1 = ∙ ∙ ∙ = c4 = 1, B = 2, and s1 > s2 > s3 > 1 > s4. Then,

k(s, B) = 2, and A0(s) := {1, 2} . With B = 3 we get k(s, B) = 3, and A0(s) :=

{1, 2, 3} ; however, the answer will not change if we extend the budget to B = 4, as

the last project has a negative expected net PV.

Example 2 (Continued). Here, project i’s net PV is si−1
ln(si)

− ci. Assume that c1 = ∙ ∙ ∙ =

c4 = 1, B = 2, and s1−1
ln(s1)

> s2−1
ln(s2)

> s3−1
ln(s3)

> 1 > s4−1
ln(s4)

. Again, k(s, B) = 2 and

A0(s) := {1, 2} .

Example 3 (Continued). Project 1’s net PV, if s2 < s1 < 1, is:

−5 ln(s2)(1 − s1) + ln(2)
5 ln(s1) ln(s2) − ln(2) ln(s1) − ln(2) ln(s2) + ln(2)2 − c1;

4To be utterly precise, we should write i1(s), . . . , in(s), as this ranking is contingent on the profile
of signals. We suppress this dependence from the notation in the interest of simplicity.
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otherwise, if s1 > 1, we have:

2 − s1

ln(2) − ln(s1)
− c1.

Similarly for s2.

In the absence of spillover of any kind, the optimal portfolio consists of the

highest-ranked projects with positive net PV that we can afford. Projects can be

assessed separately, so general managers can delegate that task to the corresponding

unit. These units can also carry out the project in complete autonomy subject to

budgetary approval.

Statistical spillover is consistent with such decentralized project assessment and

undertaking as long as information flows freely across units; the general manager only

needs to make sure that divisions share all the relevant signals so that they can

compute expected PV’s accurately.

For θ > 0, interim-expected profit surpasses the sum of expected net PV’s: For

every A ⊆ N and s, π(A, s) ≥ ∑i∈A[φi(si) − ci]. If the budget constraint is not

binding, or if projects’ costs are equal and their PV’s are independent, we can show

that A0(s) ⊆ A∗(s): All projects that can “stand on their own” remain profitable in

the presence of MS. Intuitively, such spillover can only increase said projects’ value.

The question is which other projects to add to the portfolio, projects that do not stand

on their own but become profitable given the spillover from other projects.

However, with a binding budget and correlated projects, it may pay to drop a

project that “stands on its own” to make room in the budget for a project with lower

expected net PV but with higher MS.

Example 4. There are 3 projects, which can be either successful or fail. The signals

are their value in the event of success, and successes and failures are equally likely:

vi|si = si with probability 1
2 and vi|si = 0 with probability 1

2 . However, the PV of

projects 1 and 2 are negatively correlated, while 1 and 3 are positively correlated;

see Table 1. Signals are i.i.d. uniform on [0, 1]; costs are c1 = c2 = c3 = 1, and

B = 2. With s1 > s2 > s3, then A0(s) = {1, 2}. However, E(v1v2|s1, s2) = 0 and

E(v1v3|s1, s3) = s1s3
2 ; as long as s3 is not too low — more precisely, for s3 > s2

1+θs1
—,

we have that A∗(s) = {1, 3}.
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v1 \ v2, v3 v2 = 0 v2 = s2 v3 = 0 v3 = s3

v1 = 0 0 1/2 1/2 0
v1 = s1 1/2 0 0 1/2

Table 1: Joint distribution of v1, v2, v3 in Example 4.

4 Managerial Spillover and Independent, Symmetric Projects

To highlight the impact of MS, we assume that projects are independent (so that

there are no SS). We begin with the case of ex-ante identical or symmetric projects

in the sense that their values are i.i.d and their costs are equal. Thus, we can drop

the subindex i from both φi and ci, and we can rank projects by simply ranking their

signals.

The next lemma establishes that we can always improve upon a portfolio that has

a lower-ranked project and excludes a higher-ranked project by simply swapping the

two projects. In other words, we can always improve upon a portfolio by replacing

any of its projects with an excluded better one.

Lemma 2. Fix a profile of signals s and relabel the projects if necessary so that s1 > s2 >

∙ ∙ ∙ > sn. For every project i in portfolio A and every project j excluded from A, if j is ranked

higher than i (so that i > j), then replacing i with j increases the profit from the portfolio:

π((A \ {i}) ∪ {j}, s) > π(A, s).

This lemma implies that we can characterize the optimal portfolio by means of a

cutoff: The optimal portfolio is of the form {1, . . . , j} for some project j ∈ N (unless

it is empty). Thus, we can reduce the manager’s present problem to the following

maximization problem:

max
j∈{1,...,n}

π({1, . . . , j}, s)

subject to the constraint jc ≤ B. We assume that
⌊B

c

⌋
≤ n, where

⌊ B
c

⌋
is the integer

part of B
c — the number of projects that the firm can afford.

Example 1 (Continued). Imagine that the signals are s1 = 0.9, s2 = 0.6, s3 = 0.4, and

s4 = 0.1. Costs are c1 = c2 = c3 = c4 = 0.35, and θ = 0.5. Figure 1 depicts the profit

from the portfolios of the form {1, . . . , i} for i = 1, . . . 4. If the budget constraint is

not binding, the optimal portfolio is the portfolio A∗(s) = {1, 2, 3}.
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Figure 1: Expected profit for the relevant portfolios given the signals in Example 1.

Example 2 (Continued). Let costs, θ, and signals be the same as in Example 1 above

— but under the distributions of Example 2. Now, if the budget constraint is slack,

the optimal portfolio is the full portfolio, A∗(s) = {1, 2, 3, 4}; see Figure 2.

Figure 2: Expected profit for the relevant portfolios given the signals in Example 2.
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In both examples 1 and 2, the graphical representation of the profit from the

portfolios of the form {1, . . . , i} is single-peaked. This makes finding the optimal

portfolio particularly easy: Starting from the lowest-ranked project, discard projects

one at a time while doing so raises profit; as soon as profit would start going down,

stop if you are within your budget and keep going until you meet your budget.

Unfortunately, this is not a general property of the problem, but rather a special

feature of these examples. The following example shows that, under MS, interim-

expected profit may not be single-peaked.

Example 5. In the same environment as in Example 1, but with only n = 3 projects,

imagine that the signals are s1 = 0.99, s2 = 0.3, s3 = 0.29; costs are c1 = c2 = c3 =

0.64, and θ = 0.5. Figure 3 depicts the profit from the portfolios of the form {1, . . . , i}

for i = 1, . . . 3. The full portfolio is more profitable than the portfolio {1, 2}; however,

the best portfolio to undertake is project 1 alone.

Thus, accounting for MS requires evaluating projects in blocks, and introduces

the following asymmetry in the selection process. We start with the lowest-ranked

project, where the managerial spillover is maximal. If including the lowest-ranked

project decreases the profit from the portfolio of all the other projects, it is hopeless:

Figure 3: Expected profit for the relevant portfolios given the signals in Example 5.
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Even with the largest possible spillover, its contribution to revenue falls short of its

cost. Then, it can be safely discarded. However, said contribution being positive does

not mean that the project should be automatically adopted: It may still be profitable to

discard it together with other projects, even if we already are within our budget. The

intuition is that, while spillover may make it more profitable to undertake such a

project than to abandon it if all superior ones are undertaken, the savings in aggregate

cost from abandoning multiple projects at once may outweigh the corresponding loss

in revenue.

The next proposition provides an algorithm to construct the optimal portfolio

given a profile of signals. For this algorithm, we will employ the following measure

of incremental profit.

Definition 1 (Block incremental profit). Given a portfolio A, a project i ∈ A such that

i > 1, and a profile of signals s, define the block incremental profit (BIP) of dropping i

from A, ν(i, A, s), as the change in expected profit from discarding i together with all

projects in A ranked below i, if any: ν(i, A, s) := π({1, . . . , i − 1}, s) − π(A, s).

Ranking the projects by signal from highest to lowest, Lemma 2 allows us to focus

on the highest-ranked projects that we can afford.

Proposition 3. Fix a profile of signals s and relabel the projects if necessary so that s1 >

s2 > ∙ ∙ ∙ > sn. The following algorithm constructs A∗(s).

1. Step 1: Compute ν(
⌊ B

c

⌋
,
{

1, . . . ,
⌊B

c

⌋}
, s), the BIP of dropping the lowest-ranked

project that we can afford.

(a) If ν(
⌊B

c

⌋
,
{

1, . . . ,
⌊B

c

⌋}
, s) > 0, set A1 := {1, . . . , n − 1} and move to step 2.

(b) If ν(
⌊B

c

⌋
,
{

1, . . . ,
⌊B

c

⌋}
, s) < 0, set A1 := N and move to step 2.

2. Step k = 2, . . . ,
⌊ B

c

⌋
− 1: Compute ν(

⌊ B
c

⌋
− k + 1, Ak−1, s), the BIP of dropping

project n − k + 1 from the portfolio of remaining projects under consideration.

(a) If ν(
⌊ B

c

⌋
− k + 1, Ak−1, s) > 0, set Ak := {1, . . . ,

⌊ B
c

⌋
− k} and move to step

k + 1.

(b) If ν(
⌊B

c

⌋
− k + 1, Ak−1, s) < 0, set Ak := Ak−1 and move to step k + 1.

3. Step
⌊B

c

⌋
: Compute π

(
Ab B

c c−1, s
)
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(a) If π
(

Ab B
c c−1, s

)
< 0, set A∗(s) := ∅ and stop.

(b) If π
(

Ab B
c c−1, s

)
> 0, set A∗(s) := Ab B

c c−1 and stop.

The algorithm reflects the asymmetry in the decision process. If a project yields a

negative incremental profit to the portfolio of superior projects, then said project can

be safely discarded — sub-step (a). However, a project that yields positive incremen-

tal profit to said portfolio is not automatically adopted, since it may be profitable to

discard it along with other projects at once — sub-step (b).

The asymmetry in the decision rule disappears if the profit function is single

peaked, as in examples 1 and 2. In this case, we can simplify our search process

further. In order to do this, we introduce the following definitions.

Definition 2 (Marginal profit). Given a project i > 1 and a profile of signals s, define

the marginal profit (MP) of dropping i, μ(i, s), as the function μ(i, s) := ν(i, {1, . . . , i}, s).

Definition 3 (Concavity). Given a profile of signals s, we say that π({1, . . . , i}, s) is

strictly concave in i if the MP of dropping higher-ranked projects is lower than that of

lower-ranked projects: For every i = 2, . . . , n, μ(i − 1, s) < μ(i, s).

We present a modified algorithm under strict concavity. The modifications are

immediate consequences of the assumption of strict concavity, so further details on

the proof are omitted.

Corollary 1. Fix a profile of signals s and relabel the projects if necessary so that s1 > s2 >

∙ ∙ ∙ > sn. Assume that the function π({1, . . . , i}; s) is strictly concave in i. The following

algorithm constructs A∗(s).

1. Step 1: Compute μ
(⌊ B

c

⌋
, s
)
.

(a) If μ
(⌊ B

c

⌋
, s
)

> 0, set set A1 := {1, . . . , n − 1} and move to step 2.

(b) If μ
(⌊ B

c

⌋
, s
)

< 0, set A∗(s) := N∗ and stop.

2. Step k = 2, . . . ,
⌊ B

c

⌋
− 1: Compute μ(

⌊ B
c

⌋
− k + 1, s).

(a) If μ(
⌊ B

c

⌋
− k + 1, s) > 0, set Ak := {1, . . . ,

⌊B
c

⌋
− k} and move to step k + 1.

(b) If μ(
⌊ B

c

⌋
− k + 1, s) < 0, set A∗(s) := Ak−1 and stop.
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3. Step
⌊ B

c

⌋
: Compute π({1}, s).

(a) If π({1}, s) < 0, set A∗(s) := ∅ and stop.

(b) If π({1}, s) > 0, set A∗(s) := {1} and stop.

Under strict concavity, the selection process is symmetric: A project with negative

MP can be safely discarded, and the search stops as soon as the first project with

positive MP is identified, provided we are within our budget. The reason is that,

if dropping a project yields negative marginal profit, so will dropping all higher-

ranked projects.

However, in general, the relevant incremental-profit measure is BIP, not MP. As

a broader statement for managerial practice, the point is that MS are likely require

block-level assessment as opposed to case-by-case, marginal assessments.

5 Independent Projects With Asymmetric Values

If projects are symmetric, we can rank them according to their signals. Comparing

projects ceases to be straightforward, however, once we allow their value or signal

distributions, or their costs, to be different. A more-promising project can be less

appealing than a less-promising one if the latter is sufficiently cheaper.

Even if the costs are equal, asymmetric distributions render the signals no longer

directly comparable. If a project is more likely to receive biased praise, a glowing

report is “less good news” than a more modest report can be on another project.

In order to make comparisons across projects, the signals must first be weighted. If

the projects are asymmetric but independent and have equal costs, we can rank them

based on the conditional-expectation values φi(si). Thus, we now label the projects

so that φ1(s1) > φ2(s2) > ∙ ∙ ∙ > φn(sn), which will generally be different from the

labelling based on s1 > s2 > ∙ ∙ ∙ > sn, but then proceed as in Proposition 3 (and

Corollary 1).

Example 6. There are n = 3 projects for consideration. Projects i = 1, 2 can either

be successful or a dud, as in Example 1; the value for project 3, however, is as in

Example 2. Thus, we have φ1(s1) = s1, φ2(s2) = s2, and φ3(s3) = s3−1
ln(s3)

. Costs are

c1 = c2 = c3 = 0.55, B = 1.1, and θ = 0.5. Let the signals be s1 = 0.8, s2 = 0.2,

and s3 = 0.1. Now, φ1(s1) = 0.8 and φ2(s2) = 0.2 but φ3(s3) = 0.3909 > φ2(s2).

Even though project 3 has the lowest signal, project 2 is the least-promising one once
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the signals are properly weighted. Figure 4 identifies the optimal portfolio as the

portfolio of the top-two projects, which in this case are projects 1 and 3.

If we allow for the asymmetric projects to be correlated, but their costs remain

equal, then a simpler procedure than that described in Proposition 1 leads to the

optimal project portfolio. (Proof details are omitted.)

Proposition 4. Assume that c1 = ∙ ∙ ∙ = cn = c. The manager’s problem is equivalent to

maximizing π(A, s) subject to the constraint |A| =
⌊B

c

⌋
.

With both asymmetric distributions and asymmetric costs, Lemma 2 ceases to

hold: A project that yields a high gross value and high spillover to other projects

may not be profitable if its cost is too high. In this richer environment, we are back

in Proposition 1.

Example 7. There are n = 3 projects. Projects 1 is as in Example 1; project 2 is

an in Example 2; for project 3, we have that v3 ∼ U[0, 1] but s3 given v3 is drawn

from the conditional distribution with cdf F(s3|v3) = (s3/v3)
2 on [0, v3]. Compared

to the uniform distribution, the latter puts more weight on lower signals. Thus, a

higher value of s3 is “better news” about v3 than the same value for s2 is about v2.

Figure 4: Profit from portfolios {1}, {1, 3}, and {1, 2, 3} in Example 6.
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Here, φ1(s1) = s1, φ2(s2) = s2−1
ln(s2)

, and φ3(s3) = − s3
1−s3

ln(s3). Costs are c1 = 0.6,

c2 = 0.4, c3 = 0.8, and θ = 0.5. Figure 5 depicts the profit from all portfolios when

signals are s1 = 0.9, s2 = 0.3, and s3 = 0.1, and φ1(s1) = 0.9, φ2(s2) = 0.5814, and

φ3(s3) = 0.2558. The best portfolio is A∗(s) = {1, 2}, which is feasible provided

B ≥ 1. Otherwise, we have A∗(s) = {1} if 0.6 ≤ B < 1, and A∗(s) = {2} if B < 0.6.

6 Conclusions

This paper revisits a classical problem for managers, the problem of project-

portfolio selection. Although this problem has received attention in the literature,

a key element of it, with tangible managerial consequences, has been overlooked:

the distinction between managerial and statistical spillover.

In the absence of spillover of any kind, projects can be assessed and undertaken

in complete autonomy by the corresponding unit (subject to budgetary approval).

When projects’ values are correlated and decisions must be made at the interim stage,

on the basis of preliminary information, one project’s signal becomes informative of

other projects’ value. This statistical spillover is consistent with decentralized project

assessment and undertaking provided that the manager can ensure free information

flow across divisions — so that each division can make a proper assessment of their

project.

Figure 5: Expected profit from all portfolios in Example 7.
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Managerial spillover, on the other hand, requires that projects be undertaken

within the same unit — to ensure the exploitation of common resources and assets

— and impacts how projects should be assessed: We must consider block-incremental

profit as opposed to marginal profit.

At the aggregate level, managerial spillover provides another rationale for the

firm to exist as an institution. Sharing common assets and other resources is easier

under the same organizational and governance umbrella. Statistical spillover does

not involve common assets or require joint authority, yet a common organization

structure may facilitate the flow of information across units.

We close by emphasizing the difference, in terms of managerial practice, between

investing in assets common to different businesses and the ability to use managerial

“theories”or “visions” to understand correlations across the potential outcomes of

different projects. The latter entails a managerial ability to evaluate businesses that

has different, tangible managerial implications from the ability to exploit common

assets.
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A Proofs

Proof of Lemma 1. We can identify the subsets of N with vectors in {0, 1}n, where

set A ⊆ N is represented as a vector a with i-th entry of 1 if i ∈ A and of 0 otherwise.

Then, we have:

Π(a, v) =
n

∑
i=1

[

ai(vi − ci) + θ ∑
j 6=i

aiajvivj

]

.

For each fixed v, the function Π(a, v) has increasing differences. Therefore, it is

supermodular. As supermodularity is preserved by taking expectation over v, the

result follows.

Proof of Proposition 1. Let A be any project portfolio such that ∑i∈A ci ≤ B. Since

|A| ∈ NB, we have that π(A, s) ≤ π(A∗
|A|(s), s) ≤ π(A∗(s), s), which establishes the

desired result.

Proof of Proposition 2. We can focus on sets of the form {i1, . . . , im} for j = 1, . . . , m.

By construction, no such set with m < k(s, B) can beat A0(s). On the other hand,

sets with m > k(s, B) will either not increase profit if φim(s) ≤ cim or be unaffordable

if ∑m
j=1 cij

> B. Thus, no affordable portfolio can beat A0(s).

Proof of Lemma 2. Write π((A \ {i}) ∪ {j}, s) − π(A, s) as:

π((A \ {i}) ∪ {j}, s) − π(A; s) = φ(sj) − φ(si) + 2θ[φ(sj) − φ(si)] ∑
h∈A\{i}

φ(sh)
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By affiliation, the function r(x) = φ(x) + 2θφ(x) ∑h∈A\{i} φ(sh) is strictly increasing.

Thus, the lemma follows.

Proof of Proposition 3. Fix signal profile s; let the algorithm terminate at portfolio

A∗(s), and assume that we can find a different portfolio A′ such that π(A′, s) >

π(A∗(s), s) and |A′| ≤
⌊ B

c

⌋
. By Lemma 2, we may assume that A′ is of the form

A′ = {1, . . . , j} for some j ∈ N. (It cannot be empty, as otherwise we get an absurd:

0 = π(A′, s) > π(A∗(s), s) ≥ 0; and if it is not of the aforementioned form, we can

improve on it by swapping the lower-ranked projects in A′ with the missing higher-

ranked projects.) At step n − j, the algorithm either selects A′ or identifies another

feasible portfolio with an even higher payoff. Thus, if the algorithm terminates at

A∗(s), it must be the case that either A∗(s) = A′ or π(A∗(s), s) > π(A′, s); both of

these cases lead to a contradiction.
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