Online Appendix for Efficient Multi-Agent
Experimentation and Multi-Choice Bandits:
Further Details and Proofs

This online appendix presents some additional details and proofs. The basic Bellman
equation corresponding to section 2 of the article is:
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where w(m) denotes the value function.

Let 7 € (%, 1) be a cutoff such that, for all beliefs @ > 7, the optimal strategy
prescribes experimenting on project 0 alone; and for all 7 < 1 — 7, the prescribed choice
is project 1 alone. Following Klein and Rady (2011), this cutoff is identified by means
of the value-matching (VM) and smooth-pasting (SP) conditions:

(VM) w(T) =w(l —7) =

0 if no projects are prescribed for = € [1 — 7,7,
A—c— i% if simultaneous research is prescribed for 7 € [1 — 7, 7).

(SP) w/(7) = w'(1 — 7) = 0.

For no research on intermediate beliefs, the VM and SP conditions yield:
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(with @' > 1 if and only if p(2c — X) > A(A — ¢)); for simultaneous research,
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(with 72 > 1 if and only if p(2c — A) < A(A — ¢)).
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For the setting where the bad project is productive (section 3 of the article), we have



the Bellman equation:
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where, following Keller and Rady (2010), A(7) := At + A(1 — 7) is the expected arrival
rate; A\ := A — ) is the difference in arrival rates; and j (7) := % and (for the present

problem) j_(m) :=1— j, (1 — m) are the jumps in the posterior beliefs upon arrivals.

When the optimal strategy prescribes no research for intermediate beliefs, the solution
to the resulting equation is almost identical to Proposition 1 in Keller and Rady (2010).
Said strategy is characterized by the cutoff belief:
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where p is the positive root of the function f(z) = p+A—Alz—X (A /X)x The difference
with Keller and Rady (2010) is that we require that 7° > 1.

Proposition (OA1). We have ® > 1 if and only if: (a) X+
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Proof. Rearranging terms, we find that 7 > 1 if and only if (2c—X—A)p > A—c. Since
A > ¢, we must have that 2¢c — XA — A > 0 (condition (a)), and thus p > —2=¢—. Since the
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function f(z) introduced in the last paragraph is strictly decreasing, the last inequality

is equivalent to 0 = f(u) < f (20’30_/\) (which leads to (b)). O
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Conditions (a) and (b) reduce to the benchmark characterization of costly research pro-
vided in the article when A = 0.

For the next result, we treat A as a variable, so write u = p()) and ™ = 7()); notice
that 73(0) = 7. All other parameters remain fixed throughout.

Proposition (OA2). limy o7 (\) o< ¢ — p.

Proof. The Implicit Function Theorem implies that () is differentiable, and p/(A) > 0.
Thus, 7()) is also differentiable; we have:
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The result follows. [l

The value function when the decision maker (DM) experiments on both projects at
once satisfies the following equation:

(p+ X+ w(m) = p(A + A = 2¢) + A(m)w(js(m) + AL = m)w(j-()).

Let 7 > % denote the posterior threshold beyond which the DM focuses on project 0.
In this range, the posterior can only jump upward; following Keller and Rady (2010), we
have w(m) = A(m) —c+ K(1—m)Q(7)*, where K is a constant of integration and (m) :=
1_7“ is the odds ratio. By symmetry, for beliefs below 1—7*, the DM focuses on project 1,
the posterior can only jump downward, and we have w(7) = A(1—7) —c+ K7Q(1 —7)*.

Posteriors in between j ' (7*) and 7* will jump upwards to the region (7*, 1); similarly,
posteriors in between 1—7* and j='(1—7*) will jump downward to the region (0,1 —74).
If the intervals [1 —7*, 5= (1 —7*)) and (j'(7*), 7] intersect, the value function on the
intersection satisfies:

(p+ X+ Dw(r) = p(A+ A —2c)
+A(m) [AG4 (7)) — ¢+ K (1 = . ()24 ()]
+ AL =) AL = (7)) — e+ Kj-(m)Q1 = j-(7))"].

If the intersection is empty, on the interval (j;'(7*), 7] we have:

To determine w(7), we must first identify the structure of w(j_(m)), which in turn
requires identifying the structure of w(n) in the neighborhood of 1 — 7. Whether said
intersection is empty depends on the parameters of the problem.

This construction is carried out until w(w) is characterized on the entire interval
[1 — 7, 7. The VM and SP conditions pin down the thresholds and constants of
integration.
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