
Online Appendix for Efficient Multi-Agent
Experimentation and Multi-Choice Bandits:

Further Details and Proofs

This online appendix presents some additional details and proofs. The basic Bellman
equation corresponding to section 2 of the article is:

w(π) = max

{

0, λπ − c +
λπ (w (1) − w(π)) − λπ(1 − π)w′(π)

ρ
,

λ(1 − π) − c +
λ(1 − π) (w (0) − w(π)) + λπ(1 − π)w′(π)

ρ
, (1)

λ − 2c +
λ
(
λ − c − w(π)

)

ρ

}

,

where w(π) denotes the value function.
Let π ∈

(
1
2
, 1
)
be a cutoff such that, for all beliefs π > π, the optimal strategy

prescribes experimenting on project 0 alone; and for all π < 1− π, the prescribed choice
is project 1 alone. Following Klein and Rady (2011), this cutoff is identified by means
of the value-matching (VM) and smooth-pasting (SP) conditions:

(VM) w(π) = w(1 − π) =

{
0 if no projects are prescribed for π ∈ [1 − π, π],

λ − c − ρc

λ+ρ
if simultaneous research is prescribed for π ∈ [1 − π, π].

(SP) w′(π) = w′(1 − π) = 0.

For no research on intermediate beliefs, the VM and SP conditions yield:

π1 :=
cρ

λ(λ + ρ − c)

(with π1 > 1
2
if and only if ρ(2c − λ) > λ(λ − c)); for simultaneous research,

π2 :=
λ(λ + ρ) − cρ

λ(λ + ρ + c)

(with π2 > 1
2
if and only if ρ(2c − λ) < λ(λ − c)).

For the setting where the bad project is productive (section 3 of the article), we have
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the Bellman equation:

w(π) = max

{

0, Λ(π) − c +
Λ(π) (w (j+(π)) − w(π)) − Δλπ(1 − π)w′(π)

ρ
,

Λ(1 − π) − c +
Λ(1 − π) (w (j−(π)) − w(π)) + Δλπ(1 − π)w′(π)

ρ
, (2)

λ + λ − 2c +
Λ(π)w (j+(π)) + Λ(1 − π)w (j−(π)) − (λ + λ)w(π)

ρ

}

,

where, following Keller and Rady (2010), Λ(π) := λπ + λ(1 − π) is the expected arrival
rate; Δλ := λ−λ is the difference in arrival rates; and j+(π) := λπ

Λ(π)
and (for the present

problem) j−(π) := 1 − j+(1 − π) are the jumps in the posterior beliefs upon arrivals.
When the optimal strategy prescribes no research for intermediate beliefs, the solution

to the resulting equation is almost identical to Proposition 1 in Keller and Rady (2010).
Said strategy is characterized by the cutoff belief:

π3 :=
(c − λ)μ

(λ − c)(μ + 1) + (c − λ)μ
,

where μ is the positive root of the function f(x) = ρ+λ−Δλx−λ
(
λ/λ

)x
. The difference

with Keller and Rady (2010) is that we require that π3 > 1
2
.

Proposition (OA1). We have π3 > 1
2
if and only if: (a) λ + λ < 2c and

(b) ρ > Δλ

(
λ − c

2c − λ − λ

)

+ λ

(
λ

λ

)( λ−c

2c−λ−λ

)

− λ.

Proof. Rearranging terms, we find that π3 > 1
2
if and only if (2c−λ−λ)μ > λ− c. Since

λ > c, we must have that 2c−λ−λ > 0 (condition (a)), and thus μ > λ−c
2c−λ−λ

. Since the

function f(x) introduced in the last paragraph is strictly decreasing, the last inequality

is equivalent to 0 = f(μ) < f
(

λ−c
2c−λ−λ

)
(which leads to (b)).

Conditions (a) and (b) reduce to the benchmark characterization of costly research pro-
vided in the article when λ = 0.
For the next result, we treat λ as a variable, so write μ = μ(λ) and π3 = π3(λ); notice

that π3(0) = π1. All other parameters remain fixed throughout.

Proposition (OA2). limλ→0 π3′(λ) ∝ c − ρ.

Proof. The Implicit Function Theorem implies that μ(λ) is differentiable, and μ′(λ) > 0.
Thus, π3(λ) is also differentiable; we have:

π3′(λ) =
−(λ − c)μ(λ)(1 + μ(λ)) + (λ − c)(c − λ)μ′(λ)

[(λ − c)(μ(λ) + 1) + (c − λ)μ(λ)]2
.
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By L’Hopital’s rule, we have that limλ→0 μ′(λ) =
1+ ρ

λ

λ
= 1+μ(0)

λ
, and so:

lim
λ→0

π3′(λ) =
−(λ − c)μ(0)(1 + μ(0)) + (λ − c)c1+μ(0)

λ

[λ − c + λμ(0)]2

=
(λ − c)(1 + μ(0)) c−ρ

λ

[λ − c + λμ(0)]2

=
(λ − c)(1 + μ(0))

λ[λ − c + λμ(0)]2
(c − ρ).

The result follows.

The value function when the decision maker (DM) experiments on both projects at
once satisfies the following equation:

(ρ + λ + λ)w(π) = ρ(λ + λ − 2c) + Λ(π)w(j+(π)) + Λ(1 − π)w(j−(π)).

Let π4 > 1
2
denote the posterior threshold beyond which the DM focuses on project 0.

In this range, the posterior can only jump upward; following Keller and Rady (2010), we
have w(π) = Λ(π)−c+K(1−π)Ω(π)μ, where K is a constant of integration and Ω(π) :=
1−π

π
is the odds ratio. By symmetry, for beliefs below 1−π4, the DM focuses on project 1,

the posterior can only jump downward, and we have w(π) = Λ(1−π)−c+KπΩ(1−π)μ.
Posteriors in between j−1

+ (π4) and π4 will jump upwards to the region (π4, 1); similarly,
posteriors in between 1−π4 and j−1

− (1−π4) will jump downward to the region (0, 1−π4).
If the intervals [1− π4, j−1

− (1− π4)) and (j−1
+ (π4), π4] intersect, the value function on the

intersection satisfies:

(ρ + λ + λ)w(π) = ρ(λ + λ − 2c)

+ Λ(π) [Λ(j+(π)) − c + K(1 − j+(π))Ω(j+(π))μ]

+ Λ(1 − π) [Λ(1 − j−(π)) − c + Kj−(π)Ω(1 − j−(π))μ] .

If the intersection is empty, on the interval (j−1
+ (π4), π4] we have:

(ρ + λ + λ)w(π) = ρ(λ + λ − 2c)

+ Λ(π) [Λ(j+(π)) − c + K(1 − j+(π))Ω(j+(π))μ]

+ Λ(1 − π)w(j−(π)).

To determine w(π), we must first identify the structure of w(j−(π)), which in turn
requires identifying the structure of w(π) in the neighborhood of 1 − π4. Whether said
intersection is empty depends on the parameters of the problem.
This construction is carried out until w(π) is characterized on the entire interval

[1 − π4, π4]. The VM and SP conditions pin down the thresholds and constants of
integration.
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