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Abstract

We study heuristics for a class of complex multi-armed bandit problems, the period-

by-period choice of a set of objects or “toolkit” where the decision maker learns about

the value of tools within the chosen toolkit. This paper studies heuristics that involve a

decision maker who employs Bayesian inference. Analytical results are combined with

simulations to gain insights into the relative performance of these heuristics. We depart

from the extensive bandit-learning literature in computer science and operations research

by employing the discounted-expected-reward formulation that stresses the importance

of the classic exploration–exploitation tradeoff. A companion paper, Francetich and Kreps

(2019), studies a variety of prior-free heuristics.
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1 Introduction

When hiring, the manager of a firm may consider hiring multiple candidates at once,

at least probationally. If she is uncertain about the candidates’ productivity and she can

only observe their performance on the job, if hired, then the hiring problem becomes a

multi-armed bandit problem where the arms are the different teams of potential employees.

These arms are not independent on two grounds: (a) Learning about the productivity of a

candidate might provide valuable information about others with similar qualifications and

experience; and (b) even if productivity is independent across candidates, the productivity of

two different teams with common members will not be. Thus, the well-known Gittins-index

solution for bandits with independent arms (Gittins and Jones, 1974) does not apply.

The general problem of sequentially choosing subsets of some set when their distribution

of value is unknown can be formulated as a dynamic-programming problem. However,

except in very special cases, such problem is unsolvable—either analytically or numerically—

when the set from which we choose is “large” (say, has four or more elements).1 When real

economic agents face problems with this structure, we posit that they employ heuristics or

rules of thumb. Francetich and Kreps (2019) analyzes simple heuristics that only employ

accumulated data. The present paper examines more-sophisticated heuristics that employ

the decision maker’s prior assessment of the problem and incorporate Bayesian updating.

Heuristics for multi-armed bandit problems have been extensively analyzed in a literature

that spans computer science and operations research (CS-OR) under the rubric of bandit

learning. Various categories of bandit problems with non-independent arms are investigated,

including linear bandits, Gaussian bandits, and smooth bandits. (For an introduction to this

literature focused on Thompson Sampling, see Russo et al., 2018.) The heuristics range from

relatively simple to sophisticated and employ both Bayesian and classical inference methods.

The paper closest to ours is Sauré and Zeevi (2013), in which the arms of the bandit are

subsets of a set of products that a retailer can display to each of a finite set of sequentially-

arriving customers.

Our paper departs from the bandit-learning literature in the criterion employed to assess

the heuristics. The typical criterion in CS-OR is the minimization of expected undiscounted

asymptotic regret. Roughly speaking, the decision-maker’s regret in any period is defined as

the difference between what she would receive were she clairvoyant—namely, if she knew the

distribution—and what she actually receives by employing a specific heuristic. She seeks to

minimize the expected value of the undiscounted sum of her period-by-period regret. This

criterion biases her search among heuristics towards those that will learn the truth (or, at

least, enough of the truth so that her within-period regret is eventually zero), and only if that

1Francetich (2018) analyzes a special continuous-time formulation where the choice set contains two elements.
Even this simple formulation becomes unsolvable with four or more tools, involving higher-dimensional state
spaces.
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is assured does she consider the speed and cost of the learning process.2 Instead, we employ

the criterion of maximizing the expected sum of discounted rewards, which is more standard

in the economics literature. As is well known for independent-arm bandit problems, as long

as future rewards are discounted, there is always positive probability that the decision maker

optimally settles for an objectively suboptimal arm. This means that the optimal strategy under

discounted rewards gives infinite asymptotic expected regret.

The optimal strategy is practically unobtainable in our problem, but the fact that it fares

poorly (relative to alternatives) under the expected asymptotic regret criterion suggests that,

for a decision maker who discounts rewards, prescriptions of the bandit-learning literature

must be carefully considered. The direct message of this paper is that this is so: Under

discounted rewards, bandit-learning heuristics can perform badly compared to heuristics

that are based on the considerations of the classic exploitation–exploration tradeoff.

Specifically, we formulate a stylized model of this type of problem and examine six Bayes-

rule based heuristics, two of which—Thompson Sampling and Upper Confidence Bounds—

are generally “winners” in the bandit-learning literature. A few theoretical results about

the long-run behavior of these heuristics are given, which explain why Thompson Sampling

and Upper Confidence Bounds do well for infinitely-patient decision makers. However,

when shorter-run costs are taken into account due to discounting, we see in simulations that

these long-run-excellent heuristics can fall short in comparison to heuristics that take more

seriously the exploitation–exploration trade-off.

As in the companion paper, we do not claim that we have identified the ultimate list

of heuristics. We motivate our heuristics either by their simplicity, desirable asymptotic

properties, or performance in simulations. This leads us to the broader, less-direct message

of this research: While simulations are more problem-specific than theorems, we propose

that carefully examined simulation results can provide valuable insights in settings where

more-formal analysis—including the identification of payoff bounds, the standard approach

in CS-OR—is precluded by complexity.3

The rest of the paper is organized as follows. Section 2 presents the formulation of

the problem. Section 3 recounts standard results on the optimal solution to the decision-

maker’s problem. In Section 4, we describe the six Bayes-rule based heuristics. Section 5

presents asymptotic results, while Section 6 turns to simulations. Section 7 concludes. Proofs

are relegated to the appendix. A second, online appendix with supplementary material

including R-language and additional data from simulations is available on the website of the

first author.4

2Minimizing undiscounted expected regret goes back at least to the classic paper of Lai and Robbins (1985)
and may be original to that paper.

3We are not the only members of the economic-theory literature to borrow from the CS-OR literature and to
resort to simulation. Fudenberg and He (2018) employs simulation to compare the performance of Thompson
Sampling and Upper Confidence Bounds with their proposed Player-Compatible Equilibrium in a link-formation
game.

4https://www.uwb.edu/business/faculty/afrancetich
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2 Formulation

The basic elements of the formulation are the same as in Francetich and Kreps (2019).

Each date t = 0, 1, . . ., a decision maker (she) chooses a subset or toolkit Kt from a finite set

X of tools. The state of the world at date t, vt, is drawn from some finite set V; the sequence

{vt} is i.i.d. with unknown distribution μ. The decision maker’s immediate net reward or

payoff in period t is denoted by W(vt, Kt).

The choice of toolkit also affects how much information the decision maker collects. For

each K ⊆ X, there is a partition Γ(K) of V; if she chooses Kt at time t, she observes which

cell of the partition Γ(Kt) contains vt. We assume that: (a) Γ(X) is the finest partition, so

Kt = X allows the decision maker to observe vt; (b) Γ(∅) is the coarsest partition, so Kt = ∅

produces no data in t; (c) if K ⊆ K′, then Γ(K′) is a (weak) refinement of Γ(K), so K′ is

(weakly) more informative than K; and (d) for each K, W(v, K) is constant on each cell in

Γ(K), meaning that immediate payoff is observable.

In the present paper, unlike in its companion, the decision maker exploits her prior belief

over μ, which we denote by π0. She evaluates outcomes according to the subjective expectation,

namely the expectation under the distribution of states induced by π0, of the normalized

discounted sum of immediate payoffs with discount factor δ < 1: (1 − δ) ∑∞
t=0 δtW(vt, Kt).

We posit that π0 has finite support {μ1, . . . , μN}, where the hypotheses μn are assumed

to be distinct; the prior probability that μn is the true distribution, μn = μ, is π0(μn). We also

assume that μ is in the support of the prior; in other words, that μ is one of the μn. Therefore,

whatever outcome she observes is, almost surely, never a complete surprise. Consequently,

she employs Bayesian inference; πt denotes her posterior distribution at t (computed on the

basis of data collected up to but excluding t), and πt(μn) is the corresponding posterior

probability that the true distribution is μn. We sometimes write π without subscripts to refer

to generic beliefs (prior or posteriors).

Notation and language

The following notation is used. For each toolkit K and hypothesis μn, wn(K) denotes the

objective expected immediate reward generated by K under μn: wn(K) = ∑v∈V μn(v)W(v, K);

maximizing across toolkits yields the maximum (objective) expected reward under μn, w∗
n =

max{wn(K) : K ⊆ X}, and the set of objectively optimal toolkits for μn, K∗
n = {K ⊆ X :

wn(K) = w∗
n}. Similarly, for each K and belief π, w(π, K) is the decision maker’s subjective

expected immediate reward from choosing K: w(π, K) = ∑N
n=1 π(μn)wn(K); its maximum

across toolkits, the highest myopic reward, is w∗(π) = max
{

w(π, K) : K ⊆ X
}

; finally, the

corresponding set of myopically optimal toolkits is K∗(π) =
{

K ⊆ X : w(π, K) = w∗(π)
}

.

We will be making a variety of probabilistic statements concerning what happens as time

passes, such as “If the decision maker uses Heuristic H, then with probability 1 she will learn

which of her initial hypotheses about μ is the correct hypothesis.” Being formal about such

statements requires specifying a probability space on which the random variables of interest
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(such as πt) are defined. Note, in this regard, that the heuristic employed affects the prob-

ability measure that governs the dynamics of such random variables. However, formalizing

such things makes the expositional flow quite convoluted, so we will adopt the following

shorthand: P denotes probability statements based on the probability measure generated by

the heuristic under discussion at the time and her prior beliefs; N ∈ {1, . . . , N} denotes

the index of the true hypothesis, so that μN = μ; and PN denotes probability statements

based on μ. The expectation operators E and EN correspond to the distributions P and PN ,

respectively.

The probabilistic statement in the previous paragraph is seemingly ambiguous because

it could be referring to either P or PN . However, since P attaches positive (prior) probability

to PN , any statement that has P probability 1 must have PN probability 1. When we use the

language that an event has probability 1 without any further qualification, it will be implicit

that this means P-probability 1, which implies PN -probability 1.

Finally, let K∗ denote K∗
N , the set of objectively optimal toolkits, and let w∗ denote w∗

N ,

the value of the objectively optimal toolkits or “clairvoyance” value—the highest expected

immediate reward for a decision maker who knows μ. Of course, w∗ is greater than the value

of the optimal strategy for our decision maker.

A special case and independence

For discussions and simulations, we employ the following special formulation introduced

in Francetich and Kreps (2019): (a) The states of nature are the profiles of tool values: vt =

(vt(x))x∈X ∈ (R+)X, where vt(x) is the period-t value of tool x; (b) There is a vector of

strictly positive “rental costs” c = (cx)x∈X; (c) Immediate payoff is given by the function

WMAX(v, K) := max{v(x) : x ∈ K} − ∑x∈K cx.

In general, we make no assumption about independence of vt(x) and vt(x′) for x′ 6= x. In

the context of this paper, independence can occur (or fail) at two levels. It could be that the

values of the various tools are independent under each hypothesis μn but that the decision

maker’s uncertainty about μ allows for dependence in her (subjective) assessment.5 It could

also be that, even under her assessment, learning about the value of tool x provides no

information about other tool. She entertains, for each tool x, hypotheses {μx
n : n = 1, . . . , Nx}

about the distribution of vt(x), and her prior πx
0 concerning which of these hypotheses is true

about tool x is independent of her priors on the hypotheses for other tools. (So, in this case,

the number of full priors that she has is N1 × ∙ ∙ ∙ × Nx.) We will refer to this second case as

full independence. Under full independence, the toolkit chosen in a given period allows for no

learning whatsoever about tools left behind on that date.

5Imagine that there are two tools, x and x′, whose values are either 0 or 1: v(x), v(x′) ∈ {0, 1}. The decision
maker entertains two hypotheses, μ1 and μ2. In either case, v(x) and v(x′) are independent. Under μ1, we have
v(x) = 1 with probability 3/4 and v(x′) = 1 with probability 1/4; these probabilities are reversed under μ2.
Despite their (objective) independence, a high frequency of 1’s for v(x) suggests to the decision maker that μ1 is
likely true, which in turn leads her to expect a higher frequency of 0’s for v(x′); vice versa for μ2.
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While independence may not be entirely natural in some applications, our simulations

feature a full-independence case. This formulation stands in stark contrast to our other

simulated model in which there is a great deal of dependence in the value-processes of

different tools that the decision maker can exploit.

3 The optimal solution

Because of our finiteness assumptions, an optimal strategy for our decision maker is

guaranteed to exist, and can (in theory) be found by either policy or value iteration. However,

for all but the simplest of specifications, finding a solution is impractical: The “state space”

of the corresponding dynamic programming problem consists of all (obtainable) posteriors

over {μ1, . . . , μN} and the so-called “curse of dimensionality” intrudes. Nonetheless, we can

say some things about the solution, beyond the fact that one exists.

Proposition 1. (a) Consider the following strategy: At dates t of the form t = 2k for k = 0, 1, 2, . . .,

the decision maker chooses Kt = X; at all other dates, she chooses Kt ∈ K∗(πt) (employing π0 at

t = 0). Then, with probability one, πt converges to a point mass on μN and she eventually chooses

Kt ∈ K∗ for all dates t except (perhaps) for those of the form t = 2k.6 Hence, the Cesàro averages of

her per-period payoffs almost surely converge to w∗. (b) Write u?(δ, π0) for the value of the problem

as a function of δ and π0; that is, u?(δ, π0) is the maximized value of the subjective expectation of

(1 − δ) ∑∞
t=0 δtW(vt, Kt), where we maximize over all feasible strategies. Then,

lim
δ↑1

u?(δ, π0) = w∗.

(c) For a fixed δ < 1, let πt be the decision maker’s posterior at time t when she employs her optimal

strategy. Then, {πt : t = 0, 1, . . .} converges with probability 1. If we denote this a.s. limit by π∞,

the decision maker eventually chooses only toolkits Kt ∈ K∗(π∞).

Readers familiar with the literature on multi-armed bandits will recognize part (a) as

a standard result. If the decision maker is interested in optimizing her average (expected)

reward rather than the discounted sum of rewards, she can adopt any strategy that: 1)

samples every “arm” infinitely often, using the data so generated to learn (almost surely)

the expected return from each arm, while 2) choosing whichever arm is myopically optimal

based on information gathered so far a proportion of the time that approaches one. In

our specific problem, choosing the toolkit X infinitely often generates all the information

needed; the posterior will almost surely converge to a point mass on μN .7 As πt converges

6“Eventually” means “for all dates t ≥ t∗ for some date t∗.”
7There is a subtle issue here. DeFinetti’s Theorem tells us that πt based only on outcomes at dates of the form

t = 2k converges to a point mass on μ. But, perhaps, the outcomes at all other dates—and there are many more
of them—might lead her astray. Lemmas 3 and 4 in the appendix show that this will almost surely not happen.
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to a point mass on μ, eventually we will have w(πt, K) < w(πt, K′) for all K /∈ K∗ and

K′ ∈ K∗. Therefore, almost surely, she eventually picks Kt ∈ K∗ on a frequency of dates that

approaches 1.

For part (b): w∗ is an obvious upper bound on the value of the problem, namely the

maximum feasible expected (normalized discounted) payoff for the decision maker. The

optimal strategies (for each δ) must do at least as well as the strategy in (a), whose expected

value approaches w∗ (as δ ↑ 1).

Finally, for part (c): Convergence of the posterior beliefs involves a simple invocation of

the martingale convergence theorem. Then, use the argument employed for part (a).

4 Bayes-rule-based Heuristics

We examine and compare six Bayes-rule-based heuristics. In all cases, each date, the

decision maker uses whatever information has come her way in the past to update her beliefs

and make a choice. Whenever a heuristic recommends choosing from a set that contains

multiple toolkits, we assume that the decision maker picks arbitrarily.8

Adaptive Myopia (AM). At each date t, choose a myopically optimal toolkit: Kt ∈ K∗(πt). (At

t = 0, choose some K0 ∈ K∗(π0).)

Harmonic Sampling (HS). At each date t, Kt is selected randomly: With probability t/(t + 1),

choose some Kt ∈ K∗(πt); and with probability 1/(t + 1), choose Kt = X.

A decision maker employing AM ignores the exploration-exploitation tradeoff, choosing

instead to maximize her myopic payoff. This does not imply that she never learns: She uses

whatever information comes her way by updating her beliefs. However, any information

that she gets arrives serendipitously. HS “fixes” this by choosing X as the toolkit at random

times, where those times are arranged so that X is sampled infinitely often with probability

one but with vanishing frequency. Of course, many similar fixes are available; for instance, X

could be chosen at an infinite deterministic set of dates, but with vanishing frequency, in the

spirit of Proposition 1(a). The names “simulated annealing” and “ε-greedy” are associated

in the literature with strategies in the spirit of HS (ε-greedy, however, with a small but non-

vanishing probability of experimentation at each date).9

The next two heuristics are very popular in the CS-OR literature, for reasons that will

become clear. The first was originally proposed in Thompson (1933) and, therefore, is almost

certainly the seminal heuristic of its general type.

8Whenever the decision maker must make arbitrary choices to break ties, the tie-break rule she employs at a
given period cannot involve information that she does not yet possess. This issue is further discussed in Section
5, under the rubric of “predictability,” and in the appendix; see also the appendix of Francetich and Kreps (2019).

9See, for instance, Tokic and Palm (2011).
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Thompson Sampling (TS). For each μn, fix (arbitrarily) some toolkit K∗
n ∈ K∗

n.10 At each date t,

choose Kt = K∗
n with probability πt(μn).

The story that seemingly motivates TS may seem a bit forced, but for what it is worth: At

date t, the decision maker believes that N = n with probability πt(μn). So she “simulates”

which hypothesis is true, selecting μn with its probability of being true, and then selects a

best toolkit according to the outcome of this simulation. (We’ll provide a better rationale for

this heuristic in a few paragraphs.)

The fourth heuristic that we study is an upper-confidence-bound heuristic. To motivate

it, imagine that, at the beginning of time, the decision maker had the power to pick which of

the hypotheses μ1, . . . , μN will serve as μ. She would compare the (objective) expected values

of the optimal toolkits under each hypothesis and set as μ the one that attains the highest

of these values. Then, she would proceed to choose the corresponding optimal toolkit daily.

In symbols, she would set μ = μn for n such that w∗
n = max{w∗

1, w∗
2, . . . , w∗

N} and then

choose Kt ∈ K∗
n for every t. In reality, of course, she does not have this power. Nonetheless,

she might be “optimistic” and think that nature has chosen μ this way, in her favor. Such

optimism, however, cannot (reasonably) be sustained for hypotheses against which enough

evidence has been accumulated.

This optimism is the idea behind the next heuristic. Given some ε > 0, let Pε(π) ⊆

{1, . . . , N} be the set of hypotheses whose probability, as assessed by π, is greater than ε:

Pε(π) = {n : π(μn) > ε}. In words, Pε(π) is the set of hypotheses that are “sufficiently

plausible” under the decision maker’s belief π given the “plausibility criterion” ε.

The Bayesian Upper-Confidence-Bound Heuristics (BUCB). Fix some ε > 0 and some K∗
n ∈ K∗

n

for each μn. At time t, choose Kt = K∗
n for n such that w∗

n = max{w∗
m : m ∈ Pε(πt)}.

BUCB is a “Bayesian” version of the UCB heuristic analyzed, for instance, in Francetich

and Kreps (2019). In the reinforcement-learning style of UCB, the decision maker chooses

among all toolkits the one that provides the “best plausible” return measured as the right-

hand endpoint of a classical confidence interval of that toolkit’s payoff. BUCB employs the

same logic adapted to this Bayesian setting. The decision maker rules out as implausible

any hypothesis μn whose posterior probability is less than ε and computes the value of the

optimal toolkits under each of the remaining plausible hypothesis; then, she chooses the

toolkit with the highest best-but-still-plausible return.

TS and BUCB are popular in the CS-OR literature because, with some caveats in the case

of BUCB, they are guaranteed to get to the truth, eventually. (We provide precise statements

of these results in the next section.) The same is true of HS, but TS and BUCB get to the truth

more efficiently (more quickly and at smaller cost) than does HS. Therefore, for the objective

of minimizing undiscounted asymptotic regret, they fare well.

10Fixing one K∗
n from each K∗

n simplifies the proof of Proposition 3; however, we do not believe it is necessary.
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The reason they do well, at least in our simulations, is somewhat orthogonal to how

we have motivated them. The key in each case is that the decision maker limits herself to

choosing toolkits that are optimal for some one of the hypotheses μn. This limited selection of

toolkits is particularly useful in disconfirming hypotheses: Roughly speaking, if K∗
n is chosen

infinitely often and N = n, then K∗
n would yield w∗

n on average (when chosen); if it does not do

so, the decision maker learns that N 6= n. This is reminiscent of Sauré and Zeevi (2013), who

provide conditions under which the retailer can easily and quickly rule out certain products

as suboptimal.

In the case of BUCB, where the decision maker chooses optimistically among plausible

K∗
n, either her optimism about n is eventually rewarded or she learns that her optimism was

misplaced; μn becomes implausible, and she tries the next-most-optimistic K∗
m. The only way

this can fail is if μN is deemed implausible from the start (and evidence does not lead it to

become plausible) or if, through bad luck, it comes to seem implausible; the prior probability

of both of these events goes to zero as ε goes to zero. In the case of TS, the argument is

roughly that, if N 6= n, then the posterior probability on μn must fall to zero—otherwise, K∗
n

would be chosen infinitely often, which would show that N 6= n—and so K∗
n is rarely chosen.

This argument does not quite work because of the possibility of ties, but what is true is that

the decision maker learns the truth insofar as she cares about it with probability one and, as

she learns about it, she is choosing toolkits that are more likely to be good choices for her

with higher probability. (Again, formal statements are provided in the next section.)

In both TS and BUCB, however, decisions made early on hold the possibility of being

disastrously wrong. Neither heuristic considers how K∗
n does if N = m for some m 6= n,

namely how the optimal toolkit under one hypothesis fares under a different one. This is

perhaps most obvious for BUCB. Suppose there are two hypotheses, μ1 and μ2, each with

prior probability 1/2; w∗
1 is slightly greater than w∗

2, so BUCB (with ε < 1/2) recommends

choosing K∗
1 until the posterior probability on μ1 falls below ε, if it ever does. Now, suppose

that w1(K∗
2), the expected reward from K∗

2 under μ1, is much larger than w2(K∗
1). Prudence

would suggest starting with K∗
2 ; starting with K∗

1 will produce terrible results under μ2,

which has with prior probability 1/2, while starting with K∗
2 if N = 1 is much less bad.11

This suggests the following variation where we search among optimal toolkits K∗
n but with a

view to maximizing the subjective expected immediate payoff they yield, w(π, K∗
n).

The Alternative Bayesian Upper-Confidence-Bound Heuristics (BUCBx). Fix some ε > 0 and

some K∗
n ∈ K∗

n for each μn. At time t, choose Kt = K∗
n for n such that w(πt, K∗

n) = max{w(πt, K∗
m) :

m ∈ Pε(πt)}.

In words, choose among the objectively optimal toolkits corresponding to sufficiently

plausible hypothesis the one that yields the highest myopic payoff. We will see in the next

11For TS, in this specific case, the choice of K∗
1 about half the time gives poor results if N = 2; a better strategy

would be to choose K∗
2 with probability, say, 0.9 at the start, since it performs well even if N = 1.
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section that this modification partially hurts the long-run performance of the heuristic vis-à-

vis BUCB. But for δ bounded away from one, it can (and, in our simulations, it does) improve

performance, at least for some test problems.

For both BUCB and BUCBx as defined, the possibility exists that, at some point, πt(μn) ≤

ε for all of the hypotheses μn. Were such a situation to arise, we could (by convention) set

Kt = ∅. Alternatively, as what we do in our simulations, we could fall back on TS, having the

decision maker choose Kt = K∗
n with probability πt(μn). We can always prevent this issue

altogether by setting ε < 1/N, as we do for the theoretical results of next section.

The five prior-based heuristics discussed so far are insensitive to the discount factor δ.

That is, the value of δ has no impact on the choice of toolkit at time t; all that matters is

the sequence of toolkits previously chosen and the results they generated. Except for AM,

information is (more or less) consciously sought; at least, the decision maker is making some

concession to exploration versus exploitation. But the value of information, which is greater

the closer δ is to 1, does not factor into the tradeoff. For HS, BUCB, and BUCBx, we could

try to incorporate a δ-based tradeoff into the story: For HS, increase the probability that X is

chosen at any stage as δ increases; for BUCB and BUCBx, decrease ε—that is, demand more

evidence before deeming a hypothesis to be implausible—as δ increases. In fact, we could

do something similar for TS, letting the probability that K∗
n is chosen at time t under πt be

φδ(πt(μn))/
[

∑n′ φδπt(μn′))
]

for some family of concave functions {φδ(∙) : δ ∈ (0, 1)} where

δ′ > δ implies that φδ′(∙) is a concave transformation of φδ(∙).

However, consider the following possibility. A tool x ∈ X is such that, for all v ∈ V

and all toolkits K such that x /∈ K, W(v, K ∪ {x}) < W(v, K). For instance, in the case

W = WMAX, suppose v(x) < cx for all v; no matter what v is, tool x is worth less than

it costs. Nonetheless, the cost of carrying x is small and x is highly informative about v:

v(x) 6= v′(x) for all v 6= v′, so that x tells the decision maker exactly which v has occurred

at a low cost. Then, especially for δ close to 1, the decision maker may wish to add this

“worse-than-useless-for-immediate-purposes” tool to her toolkit, at least early on, for its

informative value. Yet, except for HS, tool x will never be chosen by one of our heuristics.

The direct value-of-information calculation that is an important part of the optimal strategy

is in no way a part of AM (of course), TS, BUCB, or BUCBx. Our final heuristic has the

decision maker doing limited value-of-information calculations, calculations that would lead

her rather naturally to include such a tool in her early toolkits.

Let u0(π) the highest discounted payoff the decision maker can attain when her belief is

π and she must choose one toolkit that she will employ for the rest of time, no matter what (more) she

may learn from it:

u0(π) =
w∗(π)
1 − δ

.

Define iteratively, for m = 1, 2, . . .,

um(π) = max
K⊆X

{
w(π, K) + Eπ [δum−1(π̃)]

}
,
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where π̃ represents the random posterior the decision maker will assess based on π and the

information she receives from choosing K. In words, um(π) is the value function derived from

solving the m-step finite-horizon dynamic programming problem, where the last decision taken is

to choose whichever toolkit is myopically optimal given the (then-held) posterior assessment

and to stick with that choice for the rest of time. We denote by K∗m(π) the set of toolkits that

attain the maximum for um(π): K∗m(π) = {K ⊆ X : w(π, K) + Eπ [δum−1(π̃)] = um(π)}.

By standard results in dynamic programming for this sort of problem (bounded per-

period reward, discounting), we know that um(π) converges to the value function of the

infinite-horizon problem as m → ∞, and (as long as ties are broken consistently) K∗m(π) ∈

K∗m(π) “settles down” to an optimal toolkit given π. So, if we could perform the calculations

for large m, there would be no point to this paper. However, as m grows large, for most

problems of this sort, the computations become too many and too complex. So how about

carrying out these computations for small m and doing what is recommended?

The Approximate-Dynamic-Programming (ADP) heuristics.12 Pick a (relatively) small positive

integer m. At time t, choose Kt = K∗m(πt).

By relatively small m, we mean m = 1 or, perhaps, 2. Since this heuristic depends on

the value of m, we use ADP1 for ADP with m = 1 and ADP2 for ADP with m = 2. As a

practical matter, for even a moderate size problem (four tools, four v-vectors, six hypotheses),

implementing and simulating ADP2 is outside our capabilities. When we turn to simulations,

we’ll always be working with ADP1, which is equivalent to the Knowledge Gradient (KG)

algorithm for online learning under discounting (Powell and Ryzhov, 2012; Ryzhov et al.,

2019).13

5 Asymptotic Behavior of the Heuristics

We can say little about the performance of these heuristics for δ bounded away from

one without resorting to simulations of test problems. But we can provide some theoretical

results concerning how they behave “in the long run,” which translates into results about

how they perform for δ close to one.

We state our asymptotic results in the fashion of the Strong Law of Large Numbers (SLLN):

The probability of some event is 1, or close to 1, or approaches 1. As previously discussed,

this is with reference to both the decision maker’s prior and the true distribution, at least

insofar as the decision maker attaches positive probability to the latter. Our proofs involve a

12The term approximate dynamic programming is due to Bertsekas, who has written extensively on this sort of
heuristic for decision making. See, for instance, Bertsekas (2012).

13A different heuristic based on value-of-information computations is Information Directed Sampling (IDS;
Russo and Van Roy, 2016). In an undiscounted setting, under IDS, the toolkit recommended each period is the
one that minimizes squared regret normalized by the reduction in entropy of the posterior distribution of the
objectively optimal toolkit.
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technical restriction on how the decision maker randomizes, as in both HS and TS, and on

how she breaks ties: Such choices must be “predictable” in the sense of employing only pre-t

data at period t. (The appendix provides formal details.)

There is no guarantee that AM or ADP1 (or, for that matter, ADPm for any fixed m)

will find the objectively optimal toolkit with probability one, regardless of the value of δ.

Consider, for instance, the following simple specification: W = WMAX; there are two tools,

X = {x, x′}, and two v vectors, V = {v1, v2} = {(5, 10), (5, 1)}, where v1 = (5, 10) means

v1(x) = 5 and v1(x′) = 10; there are two hypotheses, μ1(v1) = 0.1 and μ1(v2) = 0.9, and

μ2(v1) = 0.9 and μ2(v2) = 0.1; and the costs of the tools are 1 apiece. The values of wn(K)

are shown in Table 1.

Suppose that π0(μ1) is 0.9. A decision maker who employs AM computes her immediate

expected reward as 0 from ∅, 4 from {x}, 0.9 × 0.9 + 8.1 × 0.1 = 1.62 from {x′}, and 0.9 ×

3.5 + 0.1 × 7.5 = 3.9 from {x, x′}, so she chooses K0 = {x}. In so doing, she learns nothing

when she sees v0(x) = 5 and, therefore, at time 1, she will (again) choose {x}, and so on.

Hence, with probability 0.1, she is forever picking an objectively suboptimal toolkit.

For a decision maker who employs ADP1, we need a prior probability π0(μ1) that is much

closer to 1. Suppose that π0(μ1) = 0.99. Then, a decision maker who chooses ∅ or {x} for K0

learns nothing; her posterior will equal her prior. But if she chooses either {x′} or {x, x′}, she

either observes v0(x′) = 1 or v0(x′) = 10. In the first case, her posterior is π1(μ1) > 0.9988,

while in the second case, she assesses π1(μ1) > 0.9166. But, even in the second case, if she

must then make a once-and-for-all choice of toolkit, she chooses {x}. Hence, in employing

ADP1, her optimal choice at time 0, and therefore at every time, is {x} no matter how close δ

is to 1. This means that, with this prior, ADP1 fails to generate the objectively optimal choice

for all time with probability 0.01.

Of course, the failure to find the objectively optimal toolkit with positive probability

need not be subjectively suboptimal for fixed δ < 1. It is easy to prove that, for a fixed

δ < 1 and a prior π0(μ1) sufficiently close to 1, the optimal solution to the problem is to

stick with {x} forever. However, one can also show that for a given prior π0(μ1) < 1, this

does not happen if δ is close enough to 1. (This is, essentially, a corollary to Proposition

1(b).) This example illustrates that, for ADPm for some fixed m, there are priors π0(μ1) < 1

such that one gets stuck with the “wrong” toolkit with probability 1 − π0(μ1) regardless of

how close δ is to 1. And while the numbers in this example are, perhaps, extreme, it is

not difficult to have more complex examples in which the presence of a tool which is good-

all-purpose in application but which provides no information about other, more speculative

Table 1. Values of wn(K). For each of the four toolkits, the expected value under the two hypotheses are given.
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tools, produces this phenomenon for ADP1 under reasonable parameter values. As we will

see in the simulations, a similar phenomenon can arise when the myopically optimal toolkit

produces some information but does not change the assessments about one or more tools

not contained in it.

None of this can happen with HS:

Proposition 2. If heuristic HS is employed, then (a) the decision maker learns the value of N and (b)

the Cesàro sum of her payoffs converges to w∗, both with probability 1. Hence, as δ → 1, the decision

maker’s reward under HS approaches w∗.

For TS, there is no guarantee that the decision maker will learn N . But the outcome for

her (asymptotically) is just as good as if she did.

Proposition 3. If the decision maker employs TS, the Cesàro sums of W(vt, Kt) approach w∗ with

probability one. Hence, as δ → 1, the decision maker’s reward under TS approaches w∗.

The stories for BUCB and BUCBx are more complicated. Recall that, for these heuristics,

we had the decision maker fix some K∗
n ∈ K∗

n. In the first part of the next proposition,

we introduce the following additional condition: For any two hypotheses μn and μm, if the

(random) immediate reward from the optimal toolkit under μn, W(vt, K∗
n), has the same

distribution under μn as it does under μm, then K∗
n is also objectively optimal under μm.

Proposition 4. (a). Suppose that the following condition holds: For each pair of hypotheses μn and

μm, and for K∗
n, if W(vt, K∗

n) has the same distribution under μn as it does under μm, then K∗
n ∈ K∗

m.

Then, if the decision maker employs either BUCB or BUCBx with ε < 1/N, the Cesàro sums of

W(vt, Kt) approach w∗ with probability one. Hence, as δ → 1, the decision maker’s reward under

BUCB or BUCBx approaches w∗. (b) If the condition in part (a) does not hold, and if the decision

maker employs BUCB with ε < 1/N, define Pε as the probability assessed by the decision maker ex

ante that the limit of the Cesaro sums of her rewards will converge to the objectively optimal value:

Pε = P

({

lim
T→∞

1
T + 1

T

∑
t=0

W(vt, Kt) = w∗

})

.

Then, limε↓0 Pε = 1. Hence, as δ → 1, by selecting ε that goes to zero as δ → 1, the decision maker’s

expected payoff approaches w∗.

Part (b) of Proposition 4 only works for BUCB; it is quite definitely false for BUCBx. It

is easiest to explain why (and provide a concrete example) after going through the proof, so

we leave this for the appendix.
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It is worth pointing out that our assumption that Γ(K′) is a weak coarsening of Γ(K)

when K′ ⊆ K is unnecessary for these propositions; we need (only) that Γ(X) is the dis-

crete partition of V for Proposition 2 and that, for each π, the decision maker is capable of

computing K∗(π).

Propositions 3 and 4 begin to indicate why TS and BUCB are popular in the CS-OR

literature where the criterion is minimization of asymptotic regret, although they are not

dispositive on this score. Proposition 2 says that HS gets to the full truth with probability

1, a stronger result than Propositions 3 and 4, yet HS provides infinite expected asymptotic

regret as long as there is positive probability that X is not the optimal toolkit: While HS

eventually learns the truth, it does not adapt its “exploration” to what it learns and instead

“explores,” choosing X, infinitely often. TS and BUCB get to as much of the truth as is needed

(in the case of BUCB, if the condition in Proposition 4(a) holds) and do so efficiently; the CS-

OR literature— for instance, Russo et al./ (2018) for TS—derives bounds (in a somewhat

different setting) on their speed of convergence.

The proofs in the appendix indicate why TS and BUCB are efficient in our setting. Both

of them are effective in ruling out hypotheses that are not true. If K∗
n is chosen “frequently”

and μn is not true, this will be revealed: Employing Bayes rule drives πt(μn) to zero. In the

case of TS, this means that K∗
n is chosen “infrequently” for any n 6= N ; in the case of BUCB,

when πt(μn) falls below ε, K∗
n is no longer chosen (unless K∗

n = K∗
m for some m 6= n). Note

in this regard that while TS (roughly speaking) is designed to disprove all hypotheses that

are not the truth (or, more accurately, that give rewards less than those given by the truth),

BUCB only disproves those that are false and that, if true, would provide better rewards than

does the truth. As we will see in our simulations, this makes BUCB “faster.”

6 Simulations

The results of Section 5 indicate long-run strengths of HS, TS, and (subject to a qualifica-

tion) BUCB and BUCBx, which in turn implies that they will be close to optimal as δ → 1.

But this is no guarantee with how they do relative to one another or relative to AM or ADP

for a particular δ < 1. To see how they do, we see no alternative to setting test problems and

simulating the different heuristics. Of course, the choice of test problem can color the results

derived from simulations. But the simulations—if the test problems are simple enough to

allow interpretation of the results—can shed some light. So, we report on some simulations

on test problems that, while too complex to solve fully, are still simple enough that yield

some insight into the strengths and weaknesses of the heuristics.

We simulate twelve different scenarios: two “models” × two cost levels × three discount

factors. The basic structure of these scenarios is the same as in the simulations in Francetich

and Kreps (2019), although the models in the present paper specify and make use of the

decision maker’s prior. Immediate payoff is WMAX(vt, Kt) = max{vt(x) : x ∈ Kt}−∑x∈X cx.
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There are four tools; on a given day, each tool is either “useful” or ”not useful.” If tool 1

is useful, its value is vt(1) = 15.1; otherwise, vt(1) = 1.1. Similarly, vt(2) = 15.2 or 1.2,

vt(3) = 15.3 or 1.3, and vt(4) = 15 or 1. All tools cost the same, either 2 or 3 apiece. The

discount factors we consider are δ = 0.9, 0.96, and 0.99.

In the first model, Model 1, one and only one of the four tools is useful on any given

day. Thus, V consists of four vectors: (15.1, 1.2, 1.3, 1)—tool 1 is useful; (1.1, 15.2, 1.3, 1)—

tool 2 is useful; (1.1, 1.2, 15.3, 1)—tool 3 is useful; and (1.1, 1.2, 1.3, 15)—tool 4 is useful. The

decision maker entertains six hypotheses, which are listed in Table 2(a) along with their prior

probability. Under each hypothesis, the probability of being useful on any given day is 0.4

for each of two of the tools and only 0.1 for each of the other two tools. We use the term

“good” to refer to a tool that has a higher probability of being useful. The hypotheses are

labelled νXY, where X and Y denote the two good tools. For instance, under hypothesis ν14,

tools 1 and 4 are good while tools 2 and 3 are not good (or bad); the decision maker assesses

probability 0.18 that this hypothesis is true. Table 2(b) provides the (objectively) optimal

toolkit and its expected value under each hypothesis; panel (c) gives the myopically optimal

toolkit under the prior and its expected value for the two different cost levels, as well as the

clairvoyance value, w∗.

In Model 2, the tools are fully independent. Under each hypothesis, whether a tool

is useful on any given day is independent of the usefulness of the other tools. Therefore,

V consists of 16 vectors: (1.1, 1.2, 1.3, 1)—no tool is useful; (15.1, 1.2, 1.3, 1)—only tool 1 is

useful; (15.1, 15.2, 1.3, 1)—tools 1 and 2 are useful; and so on. Similarly, each tool is either

good or not independently of the goodness of other tools, so there are 16 hypotheses; we

label them μWXYZ, where the subscript can have up to four characters and indicates which

tools are good. For instance, under μ13, tools 1 and 3 are good; under μ1234, all four tools are

good. We use μ0 to denote the hypothesis where none of the tools are good.

Full independence means that the model is specified by three probabilities for each tool:

the probability that a tool is useful on any given day if it is good; the probability that the tool

is useful on any given day if it is not good; and the decision maker’s prior probability that

the tool is good. Table 3(a) gives the numerical values we use. Table 3(b) provides, for each of

the 16 hypotheses, the prior probability and both the corresponding objectively optimal kit

and its expected value for costs 2 and 3, respectively. Table 3(c) provides “initial conditions”

and the clairvoyance value w∗.

In both models, the optimal toolkit for each hypothesis is unique. But while Model 1

satisfies the condition in Proposition 4(a), Model 2 does not: For instance, the toolkit {1, 2} is

optimal for μ12 (under either cost level) and the immediate reward from {1, 2} has the same

distribution under μ12 as under μ123 and μ1234, yet {1, 2} is not optimal under either of the

latter two hypotheses.

We henceforth use the term Problem X-Y where X = 1, 2 represents the model and Y = 2, 3

indicates the tools’ cost.
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Table 2. Model 1. (See text for explanation.)

Table 3. Model 2. (See text for explanation.)
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Simulation protocols

The basic simulation protocols are similar to those followed in Francetich and Kreps

(2019). Each of the twelve scenarios (2 models × 2 cost levels × 3 values of δ) was simulated

separately, for 10,000 iterations each. On each iteration, a hypothesis was chosen according

to the decision-maker’s prior and then the sequence {vt} was simulated out to a horizon T

that depended on the value of δ: For δ = 0.9, we chose T = 64; for δ = 0.96, T = 115; and for

δ = 0.99, T = 450. These horizons are such that we lose around 0.1% of the total value for

δ = 0.9 and around 1% for δ = 0.96 and 0.99 due to the truncation; we went out “further”

in terms of total value for δ = 0.9 because the heuristics were still making a lot of choices at

T = 64, while they had largely “settled down” at T = 115. On each iteration, each of the six

heuristics was implemented alongside two benchmarks:

• The Simple Set Based Heuristic (SSB) from Francetich and Kreps (2019). In this heuristic,

a strictly positive integer τ (a parameter) is set. The decision maker chooses Kt = X for

t = 0, . . . , τ − 1. For t ≥ τ, she computes for each toolkit K the average payoff it would

have generated and chooses for Kt whichever toolkit has the highest average. The term

would have generated is italicized because, if Kt is chosen at date t, the decision maker is

able to compute what her reward would have been had she chosen any kit K ⊆ Kt, and

these counterfactual rewards are included in her averages.

• The second benchmark, called Ideal, imagines that the decision maker, at date t, has

seen the full history {vs : s = 0, 1, . . . , t − 1} and forms a Bayesian posterior based on

(this) complete information. At each date, she chooses a toolkit that maximizes her

myopic payoff given her complete-information posterior. Obviously, this heuristic is

infeasible, but it sets an upper bound on how well any decision rule can do—including

the too-hard-to-compute optimal strategy.

The simulations were conducted in R, on an iMac. Simulating out to T = 450 was time-

consuming: Running 10,000 iterations out to T = 450 for Model 2 took a bit over 48 hours

to run. This is largely because of ADP; if ADP is omitted from the program (so only AM,

HS, TS, BUCB, BUCBx, SSB, and Ideal are simulated), 10,000 iterations took approximately

7.2 hours.

The parameters ε in BUCB and BUCBx and τ in SSB

BUCB and BUCBx require specifying the parameter ε that determines when a hypothesis

is deemed to be implausible. The performance of these heuristics can depend significantly

on the value of this parameter. Similarly, our benchmark prior-free SSB is parameterized by

τ, the number of periods that pass before the decision maker begins to make real choices.

Hence, as a preliminary step, we simulated BUCB, BUCBx, and SSB in all four problems for

a variety of values of ε and τ to find the (approximate) values of these parameters associated

with the best performance, which we then used in our main simulations. These preliminary
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simulations consisted of 5000 iterations apiece and yielded the values displayed in Table 4.

(The online appendix provides full results of these preliminary simulations.) It is noteworthy

that, in general, the optimal values of ε are relatively large while the optimal values of τ are

relatively small. As seen more generally in Francetich and Kreps (2019), “fast and sloppy”

decision making is generally superior to “slow and careful.”

For Model 1 (at both cost levels), the best value of ε for BUCB is in all cases is at least 0.25,

which is the prior probability of the most likely hypothesis. Hence, no hypothesis qualifies

as plausible at the outset—and perhaps at other times. BUCB (and BUCBx) are implemented

in the simulations to default to TS in such circumstances.

Simulation results

Having fixed the parameter values for SSB, BUCB, and BUCBx, we proceeded to the

main simulations. A variety of statistics were collected concerning the simulation results.

We present here a selection of those results; full results of the simulations (and the R scripts

employed) can be found in the online appendix. Interpretation follows presentation of the

results.

Overall performance

Table 5 provides the overall performance results for the four problems. For instance, in the

10,000 iterations of Problem 1-2 with δ = 0.99, ADP averaged a normalized discounted sum

of payoffs (out to T = 451) of 8.1255, while AM averaged 8.129; for δ = 0.9, the numbers are

7.5705 for ADP and 7.5853 for AM. In Problem 1-3, we have 6.0148 and 5.7599, respectively,

for δ = 0.99, and 4.7562 and 4.6784 for δ = 0.9. (The corresponding sample variances are

provided in the online appendix.)

Table 4. Optimal parameter values for BUCB and BUCBx.

Table 5. Basic results for four test problem-cost pairs.

18



Table 6 provides, for each simulation and pair of heuristics, the one-sided, paired-sample

difference-of-means t statistic.14 A positive entry means that the corresponding row heuristic

outperformed the column heuristic; a negative entry means the column heuristic performed

better. Most of these t-statistics are quite large; the heuristics perform differently in most

cases, and the sample size is 10,000. Of course, standard measures of the “significance” of

these t-statistics apply only if you have a single paired-comparison in mind, a priori. But, in

most cases, these numbers are so large that we can conclude that the performance differences

are, for the most part, quite significant statistically.

To help unpack the information in Tables 5 and 6, Table 7 provides for each problem and δ

the rank ordering of the heuristics by overall performance. Some of the differences in overall

performance are statistically insignificant, even with 10,000 trials; we indicate this by putting

in parentheses “ranks” that are have paired-comparison t’s of 2.5 or less. For instance, for

Problem 2-2, δ = 0.9, AM is in second place to Ideal, but it is not significatively different

(measured in this fashion) from the rank 3 heuristic, ADP; so, the corresponding entry in

Table 7 is 2 (3). ADP ranked 3rd but is not that different from the rank 2 heuristic (AM) or

the rank 4 heuristic (BUCBx), so the corresponding entry is 3 (2,4).

Table 6. Paired-sample t-statistics for pairs of heuristics in each test problem, for each δ.

14Let xHk be the net reward produced by heuristic H on iteration k = 1, . . . , 10, 000. Table 6 provides the t
statistic for the one-sided “mean = 0” test for {xAk − xBk : k = 1, . . . , 10, 000}, where A is the row heuristic and
B, the column one. Due to the variation arising from drawing different hypotheses each iteration, this test is
considerably more powerful than a difference-of-means test based on the samples {xAk} versus {xBk}.
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Table 7. Rank orders of the heuristics’ overall performances. (See text for explanation.)

Evolution of average payoffs

Tables 8, 9, and 10 provide data on the average payoffs for each heuristic at different

points in time. Table 8 gives results for t = 0 and supplies both the initially chosen toolkit

and the average payoff it yields. The initially chosen toolkit for TS is random, as is the

initially chosen toolkit in Model 1 for BUCB (which, as previously noted, defaults to TS, as

no hypothesis has prior probability exceeding ε). Tables 9 and 10 provide average payoffs

for t = 1, 4, 8, 16, 32, and 450, for the simulations for δ = 0.99. (Of all the simulations, only

ADP is directly sensitive to the value of δ, although changes in the parameter values ε and τ

cause SSB, BUCB, and BUCBx to behave differently for different δ.)

Probability of hitting the objectively optimal tookit by t = 450

Table 11 provides the percentage of iterations, for δ = 0.99, in which the toolkit selected

by each heuristic at t = 450, K450, is (objectively) optimal for the hypothesis drawn at the

start of each iteration. For Problems 1-2 and 1-3, the heuristics are likely to have reached

the optimal toolkit by t = 450. These rates are much lower for Problems 2-2 and 2-3. This

begs the question: Is there a specific factor causing these low rates? For both Problems 2-2

and 2-3, Table 12 provides the hit-rate data stratified by the number of good tools in each

iteration. For instance, 2,530 out of 10,000 iterations for Problem 2-2 had hypotheses with

three good tools (μ123, μ124, μ134, or μ234); ADP reached an optimal toolkit in 45.8% of them.

Table 8. Expected payoffs at t = 0.
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Table 9. Average payoffs at t = 1, 4, and 8, for δ = 0.99.

Table 10. Average performance at t = 16, 32, and 450.

Table 11. Percentage of iterations where K450 is an objectively optimal toolkit, for δ = 0.99.

Table 12. Percentage of iterations where K450 is an objectively optimal toolkit for Problems 2-2 and 2-3 with
δ = 0.99, stratified by the number of good tools in the reigning hypothesis.
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Speed of reaching “final toolkit”

Table 13 provides statistics about the distribution of times by which each heuristic reaches

its “final toolkit” for the δ = 0.99 simulations. Specifically, we record the earliest time by

which 25%, 50%, 75%, 90%, and 100% of the 10,000 trials have reached a toolkit from which

they do not depart subsequently: min{t : Kt = Kt+i for all i = 0, . . . , T − t}. For instance, for

ADP for Problem 1-2 and δ = 0.99, we have that Kt = K8 for t = 9, 10, . . . , 450 on at least

2,500 iterations, and Kt = K105 for all t = 106, . . . , 450, for all 10,000 iterations. The entries

450+ indicate that, for at least one iteration of the simulation, K450 was different from K449.

The description just given is not completely accurate for HS and TS. In each of these

heuristics, there is always a small probability that Kt = X is chosen strictly for informational

purposes long after the decision maker has gathered enough information to conclude that

she is “done.” Hence, for HS and TS, at each date t we computed the myopically optimal

toolkit under the posteriors that HS and TS had generated, and in constructing Table 13, we

recorded the last date at which that myopically optimal toolkit changed.

How many tools are in the myopically optimal toolkit

Table 14 provides data not collected in our main simulations but that helps interpret what

we see. It answers the following question: Suppose a posterior probability on the simplex

of hypotheses is chosen “at random” and the myopically optimal toolkit for that posterior is

computed (for a given problem). How many tools will that toolkit contain?

The idea is that the more tools such a myopically optimal toolkit contains, the higher the

amount of information that will flow “serendipitously” to AM and even to ADP, hence the

more likely it is that they will come to learn the truth even as they focus more on exploitation.

Table 14 provides the answer for each problem, with the following complication: In Model

2, posteriors are always “independent”; the probability that one tool is good is independent

of the status of all other tools. Hence, while for Problems 1-2 and 1-3 we searched over all

Table 13. Speed of reaching the final toolkit.
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Table 14. Fraction of the simplex of posteriors over hypotheses for which different size toolkits are myopically
optimal. (See text for explanation.)

possible posteriors on the simplex of posteriors, for Problems 2-2 and 2-3 we searched over

all possible fully-independent posteriors. In each case, we sampled 5000 posteriors.

Interpretation of the simulation results

The data contained in Tables 5 through 13 lead to the following conclusions. In all cases,

the qualifier “At least, for these test problems, . . .,” should be appended:

1. ADP is a strong contender across the board, finishing second or third. But since the

highest-ranking heuristic, Ideal, is infeasible, this really means that ADP ranks first or

second in all twelve simulations.

2. AM does very well in Problem 1-2 and fairly well in the other problems for δ = 0.9

and 0.96. Its very strong performance in Problem 1-2 is perhaps best explained by

Table 14; for Problem 1-2, the myopically optimal toolkit is the informationally rich

kit {1, 2, 3, 4} for 90% of possible posteriors. Of course, the posteriors that AM passes

through are not randomly selected, but when AM settles on a posterior in one of the

corners of the simplex of posteriors, where smaller toolkits are myopically optimal, it is

because evidence it received serendipitously led it to what is likely to be an “objectively

optimal” corner of the simplex. On the other hand, its relatively poorer performance

for the other problems and, in particular, for δ = 0.99, reflects the fact that it receives

less information serendipitously. We see evidence of this in Table 11 as well, where

the probability that AM reaches the objectively optimal toolkit falls dramatically as we

move from Problem 1-2 through Problems 1-3, 2-2, and 2-3. Indeed, by Problem 2-3,

AM performs worse than SSB along this metric.

3. HS can be thought of as AM with a nod towards exploration that eventually, with

probability 1, leads to the truth. Thought of in that fashion, HS’s exploration seems

extremely clumsy. First, it trails AM significantly in all twelve simulations (Table 7).

While it is guaranteed to get to the truth, in Problems 2-2 and 2-3, it failed to do so by

t = 450 in approximately 38% and 51% of the iterations, respectively.15

15The data in Table 13 concerning HS should be read with care. For Problem 2-3, Table 13 says that HS reached
its final destination for 90% of the trials by t = 206. But since this final destination is objectively wrong in 50% of
the trials and, we know, it will get to the objectively correct toolkit eventually with probability 1, in at least 40%
of the trials, it has been stuck at a toolkit from t = 206 to t = 450 that, eventually, it must abandon.
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4. In these problems, BUCB and TS do well at what has made them popular in the CS-OR

literature: They get to an objectively optimal toolkit most of the time (Table 11). (Of

course, we know that, eventually, TS will get there with probability one.) Per Table

13, BUCB gets there faster, in general, than TS does (more for Model 2 than Model 1).

But their relatively poor performance early on (Tables 8 and 9) relegates their overall

performance to mediocre or worse for δ = 0.9 and 0.96. Even for δ = 0.99, TS merits

mediocre in Problem 2-3. In contrast, BUCBx, with its concession to exploitation (in

comparison to BUCB), outperforms TS in all twelve cases and outperforms BUCB in all

cases except Problem 2-3 for δ = 0.99. BUCBx reaches the objectively optimal toolkit

by t = 450 in all trials for Model 1 (in theory, it must do so eventually with probability

1), but for Model 2, its performance in this regard is on par with AM and worse than

the other four Bayes-based heuristics.

5. Table 11 shows that, for Model 1, all of the heuristics find the objectively optimal toolkit

by t = 450 all the time except for SSB and HS, and in most iterations for those two.

But for Model 2, only TS, BUCB, and (of course) Ideal get there in most iterations.

Tables 12 and 13 together indicate what is going wrong. For AM, the decision maker is

choosing a myopically optimal toolkit. Per Table 13, it is always a one- or two-element

toolkit for Problem 2-3; for Problem 2-2, it is a one- or two-element toolkit for over

90% of the possible posteriors. For BUCBx, she chooses a myopically optimal kit from

among those that are optimal for some hypothesis, but, as Table 3 shows, that means

she is choosing from among all the two- and one-element toolkits. If, say, all four tools

are good, it is likely that evidence will accumulate that the tools in the myopically

optimal toolkit will confirm their goodness, which in most cases will only strengthen

the decision-maker’s conviction that the selected toolkit is myopically optimal. In other

words, for Model 2, the only way to confirm the goodness of a tool is to choose it. If it

is not chosen, it never gets a chance to show that it is good.

7 Concluding remarks

It is hardly surprising (at least, ex post) that BUCB and TS do poorly relative to ADP

for smaller δ—and in some cases they do very poorly—while they are relatively much better

for δ = 0.99. They are designed not for the traditional exploration–exploitation tradeoff of

discounted multi-armed bandit problems, but instead to find the objectively optimal toolkit

and to do so relatively efficiently. It is worth observing, however, that in special cases, they

can perform poorly even at the task for which they are designed. Suppose that we add to

Model 2 a fifth tool whose value vt(5) is never greater than one, so it is never employed if

the toolkit includes at least one other tool. However, this fifth tool has a low cost c5 and is

informationally rich: There is a one-to-one map from (vt(1), vt(2), vt(3), vt(4)) to vt(5). (Of

course, this is inconsistent with “full independence” of the five tools.) BUCB and TS, as well
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as BUCBx and AM, never choose a toolkit containing this fifth tool since it is never a member

of any toolkit from K∗
n for any n (nor is it ever a member of any myopically optimal toolkit).

But, if c5 is close to zero, it is likely to be chosen by ADP in conjunction with the myopically

optimal toolkit; the only case in which it would not be chosen by ADP for sufficiently small

c5 is if no realization of vt yields a posterior that affects which toolkit is myopically optimal

in t + 1. Thus, with this tool in existence, ADP is likely to provide a payoff equal to the payoff

from using Ideal less c5.16

One might argue that such useless-in-application-but-informationally-rich tools are un-

likely to exist. At the same time, this illustrates in stark fashion that, of all our heuristics,

only HS and ADP are designed with the classic exploration-exploitation tradeoff in mind;

and while HS is, relatively speaking, very slow to get to the truth, ADP does seem (among

the heuristics we explored, in the context of our test problems) to be the all-purpose winner

if we ignore how computationally intensive it is. This suggests that one should seek direct

measures of the informational richness of different tools or toolkits, to be able to fashion

heuristics that more directly balance exploration and exploitation. For an example of this in

CS-OR, see Russo and Van Roy (2016).

Note that the heuristics investigated here depend for their (good) level of performance

on the decision maker having a reasonably accurate model of her situation. We cooked the

accuracy of the decision maker’s model into our results by drawing the value distribution

from {μ1, . . . , μN} and by evaluating performance relative to her prior. Suppose, in contrast,

that the decision maker has a good structural model but her prior on the various hypotheses

is badly flawed. Bayesian updating of such a prior could take a long time to correct the

flaws. In this respect, one can make a case for less sophisticated heuristics, such as SSB, that

depend less on the decision maker’s hypotheses. SSB is at best a mediocre contender in the

context of this paper and how we evaluated the performance of the heuristics. But compared

to the Bayes-based heuristics, SSB is robust in its mediocrity, while the former are superior

for accurate models but may be disastrous for a decision maker with a badly misspecified

prior.

To close, we take the following broad view of what this paper teaches us. Cognitive

psychologists have studied heuristics and, in particular, the qualities perceived as important

to being a good heuristic. Gigerenzer and Todd (2000) emphasize ecological rationality, or

how the structure of the environment matches the structure of the heuristic. Our results,

if nothing else, confirm that, in the context of choosing a toolkit, ecological rationality is

paramount. In particular, what works well in a low δ environment can be quite different

from what works well when δ is close to one. What works well when information flows

freely (as in Model 1) can be quite different from what works well where there are few if any

serendipitous informational gains (as in Model 2). To take this to more real-life examples,

16This fifth tool could be even more informationally valuable, if, for instance, vt(5) under hypothesis n has a
different support than under hypothesis m for every pair of hypotheses n 6= m.
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consider the difference in heuristics for choosing players for a baseball team—where the

use of individual past-performance data is prevalent—from choosing “components” for a

winning basketball team, where how well the players fit together becomes much more of

an issue. Or consider the research into staffing policies done in the Stanford Project on

Emerging Companies (Hannan and Baron, 2002): Organizations aiming for a strong and

internally focused organization culture choose new employees based on entirely different

(heuristic) criteria than do organizations that seek breakthrough technologies.

Gigerenzer and Todd (2000) proposes two criteria for assessing heuristics: coherence,

which concerns the internal, logical coherence of the judgments involved in a heuristic, and

performance, which relates to how the heuristic fares in real-world environments. Roughly

speaking, we see our theoretical results to be largely concerned with coherence, while the

simulation results are about performance, albeit performance in a simulated world, not the

real thing.

Viewed from the lens of mainstream economics, we suspect that readers will have found

the theoretical results to be more satisfying and convincing than the conclusions we draw

based on our simulations. The theoretical results are general, logical propositions; in contrast,

our simulation-based conclusions are drawn from an extremely limited set of simulations.

This takes us back to our less-direct point: One can and should learn from both sorts of

results (as well as from field-based empirical results). In particular, economic theorists have

a tendency to prove propositions about what happens for dynamic phenomena in the limit—

for instance, as discount factors go to one—because in the limit is where one finds tools to

prove the propositions, such as the Strong Law of Large Numbers. In the terminology of

Gigerenzer and Todd (2000), proposition-proving is most often about coherence.

However, to understand what our propositions tell us about the real world—that is, about

performance—one should understand, in practical terms, how close δ must be to 1 for a given

level of approximation. It is good to know that TS and HS will lead to the truth, eventually.

But this may be misleading without some sense of what, practically speaking, eventually is.

Where that sense can only be derived from simulation, simulation should be employed.

It would be even better to complement what this paper does with experimental or field

research about how individuals act when facing these sorts of problems. While waiting for

such work, we hope the reader is convinced (as are we) that a combination of theorem-proving

and simulation improves understanding when theorem-proving alone cannot take us far.
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A Appendix: Proofs

We use a standard probability space (Ω,F , P) on which we define a random variable

N , with support {1, . . . , N}, and processes {vt} and {ut}. The process {ut} is i.i.d. with

uniform distribution on [0, 1] and is independent of everything else; for each n = 1, . . . , N,

the probability of the event {I = n} is π0(μn); and the {vt} are conditionally i.i.d, conditional

on the value of N , with distribution μn if N = n. We construct the interlaced filtration

F0 ⊆ G0 ⊆ F1 ⊆ G1 ⊆ . . .F∞, as follows: F0 is trivial; G0 is the sigma-field generated by u0;

for t ≥ 1, Ft is generated by (u0, v0, . . . , ut−1, vt−1) and Gt is Ft augmented by ut. The role of

the uniform random variables ut is explained momentarily.

On this space are defined the random variables {Kt, πt, wt : t = 0, 1, . . .} representing,

for each date t, the choice of toolkit (Kt), the decision maker’s posterior (πt, with π0 given),

and her reward (wt = W(vt, Kt)). These random variables depend on the “overall state of

nature” ω = (u0, v0, u1, v1, . . .) as well as on the heuristic the decision maker employs; we

suppress this dependence from notation. (Each of our results involves only one heuristic at

a time; when proving the result for a given heuristic, we assume that the random variables

are defined relative to this heuristic.)

Of course, when the decision maker chooses Kt, she has (in general) less information than

Gt; she knows {u0, u1, . . . , ut}, but she will not (necessarily) have observed v0 through vt−1.

Fixing (implicitly) the heuristic and defining H0 as G0 (which she is assumed to know as she

goes to choose K0), we can inductively define the information she has when she chooses Kt

by the sigma-field Ht: For t ≥ 1, Ht is Ht−1 augmented by ut and the information gained

from the cell of Γ(Kt−1) that contains vt−1.

Formally, we require that Kt is Ht measurable. That is, if the choice of Kt is determined

by more than the information available just after time t − 1—namely, by H1−1 augmented by

the information gained from Kt−1 and the information provided by the cell of Γ(Kt−1) that

contains vt−1—it must be determined by this information and ut. The role of ut is to serve

as a feasible randomization device or tie-break rule: We suppose that the decision maker,

insofar as she randomizes her choices, bases those choices at time t on the value of ut.

We use five technical lemmas:

Lemma 1. If {ζt : t = 0, 1, . . .} is a martingale with uniformly bounded increments, limt→∞ ζt/t =

0 P-a.s.17

Lemma 2. Suppose {Xt : t = 0, 1, . . .} is a process adapted to the filtration {Ft : t = 0, 1, . . .}, all

17See Neveu, (1975, Proposition VII-2-4).
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defined on (Ω,F , P), where the conditional distribution of Xt, conditional on Ft−1, is given by some

fixed distribution function F that is also the marginal distribution function of each Xt. (Think of Xt as

taking values in some Rk.) Let {χt : t = 0, 1, . . .} be a process defined on the same probability space

such that each χt equals either 0 or 1, χ0 is constant, and χt is Ft−1-measurable.18 Fix a measurable

set A in the range of the Xt’s, and let p be the (marginal) probability that any Xt ∈ A. Write F∞ for

the meet (limit) of the Ft, and write B = {ω ∈ Ω : ∑∞
t=0 χt(ω) = ∞}. Then,

lim
t→∞

∑t
s=0 χs 1{Xs∈A}

∑t
s=0 χs

= p on B, P-a.s.,

where 1{∙} is the usual indicator function. If the support of each Xt is bounded,

lim
t→∞

∑t
s=0 χs Xs

∑t
s=0 χs

=
∫

xF(dx) on B, P-a.s.

Think of the case where {Xt} is an i.i.d. sequence and Ft is the σ-field generated by

{Xs : s ≤ t}. A statistician is keeping track of how many times Xt is in A (or of the Cesàro

sums of the Xt) but with the following complication: She only includes in her sample some

of the Xt. Specifically, Xt is included if χt = 1 and is not included if χt = 0. The decision

whether to include Xt is made based on information received prior to time t; that is, χt ∈ Ft−1.

Please note that, for a given sample path, nothing guarantees that χt will be 1 infinitely often;

there are sample paths for which the statistician only selects finitely many of the Xt to include

in her sample. But on the event, call it B, where she samples infinitely many of the Xt, the

usual conclusions of the SLLN (both for the Cesàro sums and for the frequency that the

selected Xt lie in some given set A) hold: They converge to what they “should” converge

almost surely on B. (Of course, the result is trivial if P(B) = 0; it is only meaningful when

P(B) > 0.)

This is a classic result, which Kallenberg (1988) attributes to Doob (1936). It is easily

proved using Lemma 1: For each ω, given n = 1, 2, . . ., let Tn(ω) := min{t : ∑t
s=0 χs(ω) = n},

where we let Tn(ω) = ∞ if ∑∞
s=0 χs(ω) < n. Define

ζn :=

{
1{XTn∈A} − p if Tn < ∞,

0 if Tn = ∞.

Then, {ζ1 + . . . + ζn : FTn} is a bounded-increments martingale (where F∞ is the meet of the

Ft). Apply Lemma 1.19

Lemma 3. Fix a probability space (Ω,F , P), sub-σ-fields G and G′ where G′ is a refinement of G,

18In the terminology of stochastic processes, χt is predictable.
19We are grateful to Hans Foellmer for the reference to Neveu (1975) and to David Aldous for the references

to Kallenberg (1988) and Doob (1936).

29



and an event A ∈ F . Let B = {ω ∈ Ω : P(A|G)(ω) = 1} (for any convenient version of P(A|G)).

Then, up to a P-null set, P(A|G′) = 1 on B (and the same is true with 0 replacing 1).

In words: If, based on the information provided by G , a decision maker (or statistician)

concludes that A has definitely happened (or definitely not happened), then giving her more

information will (a.s.) not change that judgment. The proof is a trivial application of the

definition of conditional probability: Since we have said “up to a P-null set,” there is nothing

to prove if P(B) = 0. So assume that P(B) > 0. Now P(A|G) is E[1A|G ] and, since B ∈ G ,

∫

B
1AdP =

∫

B
E[1A|G ]dP =

∫

B
P(A|G)dP = P(B),

where the last equality holds since P(A|G) = 1 on B. But since B ∈ G ⊆ G′, B is G′

measurable, and:

P(B) =
∫

B
1AdP =

∫

B
P(A|G′)dP.

Since conditional probabilities are bounded above by 1, the integrand in the last integral

must be 1 (a.s.) on B. (And similarly for 0.)

Lemma 4. Fix a probability space (Ω,F , P) and a filtration of sub-σ-fields {Ft : t = 1, 2, ...}. For

any event A ∈ F , {P(A|Ft) : t = 1, . . .} is a martingale and, being bounded, converges almost

surely. Moreover, the a.s. limit of P(A|Ft) is P(A|F∞), where F∞ is the meet of all the Ft.

This is entirely standard.

Lemma 5. Fix a probability space (Ω,F , P), a filtration of sub-σ-fields {Ft : t = 1, 2, ...}, and an

event A ∈ F such that P(A) > 0. Write PA for P conditional on A: PA(B) = P(A ∩ B)/P(A) for

all B ∈ F . Then, the stochastic processes {P(A|Ft) : t = 1, 2, . . .} and {ln(P(A|Ft) : t = 1, 2, . . .}

are both submartingales (for the filtration {Ft}) under PA.

Of the five lemmas, only Lemma 5 is not a standard result (as far as we know), and

perhaps needs some explanation. We are thinking of a decision maker or statistician receiving

a sequence of informative signals whose content is specified by the Ft. This individual

is interested in particular in the conditional probability that event A is true, where A has

strictly positive prior probability. Of course, under her prior, her successive conditional

probabilities that A is true form a martingale; that is Lemma 4. What Lemma 5 says is

that, if we look at the process of posterior probabilities that A is true, not under her prior

but instead under the conditional probability distribution P(∙|A), then this process and the

process formed by the log of her posteriors are submartingales. Please note, we are not

talking about {P(A|A,Ft) : t − 1, 2, . . .}, but about the process {P(A|Ft) : t = 1, 2, . . .} under

the probability law P(∙|A). For this result (which we believe is originally attributable to

Turing), see Francetich and Kreps (2014).
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Since there are only finitely many μn, N applications of Lemma 4 tell us that, what-

ever the decision maker is doing, her sequence of posteriors {πt(μn) : t = 0, 1, . . .} con-

verges for each n with probability 1. Let π∞ be the limit posterior; we have π∞(μn) =

P(N = n|H∞), where H∞ is the σ-field generated by all the information she receives.

Proof of Proposition 1. At dates t = 2k for k = 0, 1, . . ., the decision maker’s chooses Kt = X;

since the marginal distributions of the vector vt are different under the different μn, it is an

immediate consequence of Lemma 2 that, if she ignores information received on dates other

than those of the form t = 2k, she will learn the true value of N P-a.s. Since the totality of

information she learns is a refinement of what she learns on those dates only, Lemma 3 tells

us that, conditional on all the information she does receive, she learns N a.s. Then, Lemma 4

tells us that, when we supplement the information she receives on other dates, her posterior

converges to π∞(μn) = 1 on the event {N = n} and to π∞(μn) = 0 in its complement.

Since at times t not of the form 2k she chooses a myopically optimal toolkit given πt, on

{N = n}, past some point in time, at those times she must (a.s.) be choosing a toolkit that

is optimal under μN . (Any toolkit that is not optimal against μN is, eventually, not going to

be myopically optimal.) This, together with a simple application of the SLLN concerning the

rewards she receives (once she has settled on toolkits that are optimal given μN ), gives the

result. �

Proof of Proposition 2. This is a simple variation on the proof of Proposition 1. The decision

maker chooses Kt = X infinitely often with probability one. On that (a.s.) event, the vt

observed reveal N with probability 1. Data she receives at other dates cannot change her

posterior assessments that N = n, for each n; they converge to 1 if N = n and 0 if not.

Hence, on dates when she chooses myopically, she is eventually choosing objectively optimal

toolkits. As t → ∞, the rewards from these choices converge to w∗ with probability 1. �

Concerning the proofs of Propositions 3 and 4, we give a detailed proof of Proposition 3,

and then use the ideas in this proof to give a more discursive proof of Proposition 4.

Proof of Proposition 3. Suppose that, for some n ∈ {1, . . . , N}, π∞(μn) 6= 1{N=n} P-a.s. Since

0 ≤ π∞(μn) ≤ 1, this implies that
∫
{N=n} π∞(μn)(ω)P(dω) < P

(
{N = n}

)
= π0(μn);

and since E[π∞(μn)] = π0(μn), we must have P{N = n′ and π∞(μn) > 0} > 0 for some

n′ 6= n. There may be many such n′; fix one. On the event {N = n′ and π∞(μn) > 0},

K∗
n is eventually chosen with probability bounded away from zero; thus, K∗

n will be chosen

infinitely often for P-almost all ω ∈ {N = n′ and π∞(μn) > 0}. Using Lemmas 2 and 3, then,

the decision maker asymptotically learns the full distribution of payoffs generated by K∗
n on

this event. Hence (on this event), the distribution of W(v, K∗
n) must be the same under μn′ as

under μN , for otherwise πt(μn) would asymptotically approach zero.
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Define a binary relation ≺ on {1, . . . , N} as follows:

n ≺ n′ if P{N = n′ and π∞(μn) > 0} > 0.

Note that we allow n′ = n in this definition. In fact, it must be true that n ≺ n: Lemma 5

states that, with respect to P[∙|N = n], which we abbreviate as Pn, {πt(μn) : t = 0, 1, . . .} is

a closed submartingale. Therefore, E[π∞(μn)|N = n] ≥ π0(μn) > 0, and so π∞(μn) must be

strictly positive with positive probability on {N = n}.

Let ≺̄ be the transitive closure of ≺. For each n, let I(n) = {n′ : n ≺̄ n′} and let Λn =

∪n′∈I(n){N = n′}. (Note that n ∈ I(n).) We assert that, for each n,

∑
n′∈I(n)

E[π∞(μn′) ∙ 1Λn ] = ∑
n′∈I(n)

π0(μn′). (A.1)

It is of course true that E[π∞(μn′)] = π0n′ , since π∞ closes the martingale of posteriors.

The point is that for all n′ ∈ I(n), π∞(μn′) = 0 on the complement of Λn, so omitting

the complement of Λn in the integrals on the left-hand side loses nothing. Interchange the

summation and the integral on the left-hand side of (A.1):

E

[

1Λn ∑
n′∈I(n)

π∞(μn′)

]

= ∑
n′∈I(n)

π0(μn′).

Since E[1Λn ] = ∑n′∈I(n) π0(μn′), this implies that, for every n,

∑
n′∈I(n)

π∞(μn′) = 1 P-a.s. on Λn.

Now, go back to any m for which π∞(μm) 6= 1{N=m}, and take any n 6= m such that

m ≺ n. Apply (A.1) for this specific n. Since π∞(μm) > 0 with positive probability on

{N = n} ⊆ Λn, we conclude that m ∈ I(n). Hence, for every n 6= m such that m ≺ n, there

is a chain m = m0 ≺ n = m1 ≺ m2 ≺ . . . ≺ m` = m.

Consider any pair n and n′, n 6= n′, such that n ≺ n′. We know from the first part of

this proof that the distribution of W(vt, K∗
n) under μn must be the same as under μn′ . This

implies that w∗
n = wn′(K∗

n) and, of course, wn′(K∗
n) ≤ w∗

n′ . Applying this to the cycle created

last paragraph, we conclude that this weak inequality must be an equality. That is:

If n ≺ n′, then w∗
n = wn′(K∗

n) = w∗
n′ .

For the remainder of the proof, we fix an arbitrary n and show what happens on the event

{N = n}. Define random variables Ym(t) := 1{Kt=K∗
m}W(vt, K∗

m) and Y(t) := ∑N
m=1 Ym(t).

That is, Y(t) is the decision-maker’s actual net payoff in period t. The limit of the Cesàro

sums of the Y(t) (in which we are interested) is the sum of the limits of the Cesàro sums
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of the Ym(t), assuming that these limits exist. The limit of the Cesàro sums of the Ym(t),

limT→∞

[
∑T

t=0 Ym(t)/(T + 1)
]
, is:

lim
T→∞

1
T + 1

T

∑
t=0

[Ym(t) − πt(μm)wn(K∗
m)] + lim

T→∞

1
T + 1

T

∑
t=0

πt(μm)wn(K∗
m), (A.2)

assuming both limits exist. Under Pn, they do (almost surely). To prove this, compute:

En [Ym(t) − πt(μm)wn(K∗
n)
∣
∣Ft
]

= En [En[1{Kt=K∗
m}W(vt, K∗

m)|Gt
]∣∣Ft

]
− πt(μm)wn(K∗

m);

the equality holds because πt is Ft-measurable and wn(K∗
m) is deterministic. Moreover, the

event {Kt = K∗
m} is Gt-measurable, so this last equality continues:

= En [1{Kt=K∗
m}En[W(vt, K∗

m)
∣
∣Gt
]∣∣Ft

]
− πt(μm)wn(K∗

m). (A.3)

Under TS and on the event {N = n}, the value of vt is independent of all information in

Gt and is distributed according to μn, so En[W(vt, K∗
m)|Gt] = wn(K∗

m) and En[1Kt=K∗
m
|Ft] =

πt(μm). Hence, the expression in (A.3) is 0, which implies that the process {ζT} defined by

ζT = ∑T
t=0[Ym(t) − πt(μm)wn(K∗

m)] is a martingale with bounded increments with respect to

Pn. Lemma 1 ensures that the limit of the Cesàro sums of {ζT} is 0 (Pn-a.s.). So, we are left

in (A.2) with:

lim
T→∞

1
T + 1

T

∑
t=0

πt(μm)wn(K∗
m).

We know that, for every sample path, the sequence πt(μm) converges to π∞(μm). So, along

each sample path, this Cesàro limit is just π∞(μm)wn(K∗
m). If π∞(μm) = 0, this is zero. If

π∞(μm) > 0, then we know from our earlier argument that (for almost every sample path)

wn(K∗
m) = w∗

n. Therefore, when we recompose the sum of these Cesàro sums of the Ym(t) to

find the limit of the Cesàro sums of the Y(t), we get:

lim
T→∞

1
T + 1

T

∑
t=0

Y(t) = lim
T→∞

1
T + 1

T

∑
t=0

N

∑
m=1

Ym(t) =
I

∑
j=1

π∞(μn)wn(K∗
m) = w∗

n.

This concludes the proof. �

Proof of Proposition 4. Part (a): Suppose that the decision maker is employing either BUCB or

BUCBx with threshold ε and she chooses K∗
n infinitely often; then, it must be that π∞(μn) ≥ ε.

If {N = `} for some ` such that W(vt, K∗
n) has a different distribution under μn than under

μ` , then (applying Lemmas 2 and 3 yet again) choosing K∗
n infinitely often would reveal that

{N 6= n} and so π∞(μn) would have to be 0, a contradiction. Thus, if K∗
n is chosen infinitely

often, w∗
n = w(K∗

n, μm) for whichever m = N and the SLLN implies that the average payoff

on those dates must converge to w∗
m. It follows that, on the event {N = m}, any n such that
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K∗
n is chosen infinitely often grants the decision maker a limiting average payoff of w∗

m and

makes the Cesàro sums of her payoffs converge (a.s.) w∗
m.

Part (b): Fix n. Consider the event {N = n and π∞(μn) ≤ ε}. Lemma 5 tells us that

{ln(πt(μn)) : t = 0, 1, . . . , ∞} is a submartingale under Pn, so En
[

ln(π∞(μn))
]
≥ ln(π0(μn)).

Since the integrand is bounded above by zero, En
[
ln(π∞(μn))1{π∞(μn)≤ε}

]
≥ ln(π0(μn)). An

obvious upper bound on the latter integral is Pn{π∞(μn) ≤ ε} × ln(ε), so we have:

Pn{π∞(μn) ≤ ε
}
≤

ln(π0(μn))
ln(ε)

,

which converges to 0 as ε ↓ 0. Now, consider the event {N = n and π∞(μn) > ε}. The

only way in which the decision maker could fail to be choosing K∗
n eventually is if, for some

m 6= n, she is choosing some other K∗
m infinitely often. For this to be true, it must be that:

1. π∞(μm) ≥ ε, for otherwise, past some point in time, μm will forever after be deemed

implausible and K∗
m will not be a candidate for Kt;

2. w∗
m ≥ w∗

n, for otherwise, once πt(μn) is greater than ε and remains there forever after,

K∗
m will not be selected as K∗

n offers a better plausible prospect.

Now, if K∗
m is selected infinitely often, the decision maker learns wn(K∗

m) Pn-almost surely. It

must be that wn(K∗
m) ≥ w∗

n; otherwise, the data would tell her that N 6= m and πt(μm) would

approach zero. Since wn(K∗
m) ≤ w∗

n, the only possibility is that wn(K∗
m) = w∗

n. The argument

in the proof of Proposition 3 is then easily adapted to show that the Cesàro sums of payoffs

must have limit w∗
n. �

The reason why part (b) fails for BUCBx is that argument in point 2 falls apart. Imagine

there are two tools, x and y, with values v = (v(x), v(y)) = (10, 12) or (10, 1); there are two

hypotheses, μ1 and μ2; the probability that v = (10, 12) is 0.9 under μ1 and 0.1 under μ2;

the prior is π0(μ1) = π0(μ1) = 0.5; her reward is W = WMAX; and c1 = c2 = 7. We have

K∗
1 = {y} and K∗

2 = {x}. BUCB (with ε < 0.5) starts with K0 = {y}. If μ1 is true, chances

are that she eventually learns this (the probability goes to 1 as ε → 0); if μ2 is true, πt(μ1)

eventually falls to where she shifts to {x}, which is the right choice in this situation. But if

she employs BUCBx, the best K∗
n in terms of immediate payoff is {x}. Choosing K0 = {x},

her posterior freezes. If μ2 is true, this is the wrong long-run choice.

34


