Computer Engineering Curriculum***

Name: ____________________________ **Student ID#:** ____________________________ **Date:** ____________________________

Degree Requirements

CSS: 25 credits
- CSS 342: Data Structures, Algorithms & Discrete Mathematics I **5**
- CSS 343: Data Structures, Algorithms, Discrete Mathematics II **5**
- CSS 360: Software Engineering **5**
- CSS 427: Intro to Embedded Systems **5**
- CSS 430: Operating Systems **5**

B EE: 25 credits
- B EE 215: Fundamentals of EE **5**
- B EE 233: Circuit Theory **5**
- B EE 235: Continuous Time Linear Systems **5**
- B EE 271: Digital Circuits & Systems **5**
- B EE 331: Devices & Circuits I **5**

Business/Management (choose one): 5 credits
- CSS 350: Management Principles for Computing Professionals **5**
- BEE/CSS 371: The Business of Technology **5**

CSS or B EE Electives: 10 credits
- Max of 5 credits combined can be CSS or B EE Special topics courses.
- Max of 5 credits combined can be CSS or B EE Independent Study or Undergrad Research.
- 300 OR 400 Level Class: **5**
- 400 Level Class: **5**

Capstone (must be taken consecutive quarters): 5 credits
- B CE 495: Capstone Design I **2**
- B CE 496: Capstone Design II **3**

Areas of Knowledge: 30 credits

<table>
<thead>
<tr>
<th>Visual, Literary, Preforming Arts (VLPA): 15 credits</th>
<th>Individuals & Societies (I&S): 15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>Grade</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>

Writing/Composition: 15 credits

<table>
<thead>
<tr>
<th>Writing/Composition</th>
<th>Comp E Admission Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition</td>
<td>Comp E Admission Prerequisite</td>
</tr>
<tr>
<td>B WRIT 135: Research Writing or Intro to Technical Writing**</td>
<td>5</td>
</tr>
<tr>
<td>CSS 301: Technical Writing</td>
<td>5</td>
</tr>
</tbody>
</table>

Other Major Requirements

**Courses with ** can be completed before admittance

Natural Science
- B CHEM 143: General Chemistry I** **4**
- B CHEM 144: General Chemistry I Lab** **2**

Math
- ST MATH 307: Introduction to Differential Equations** **5**
- ST MATH 308: Matrix Algebra with Applications** **5**
- ST MATH 324: Multivariable Calculus** **5**
- ST MATH 390: Probability & Statistics in Engineering **5**

Note

- **minimum 2.0 grade required**
- Can be met through VLPA or I&S
- CSS: 25 credits
- B CHEM 143: General Chemistry I** **4**
- B CHEM 144: General Chemistry I Lab** **2**
- ST MATH 307: Introduction to Differential Equations** **5**
- ST MATH 308: Matrix Algebra with Applications** **5**
- ST MATH 324: Multivariable Calculus** **5**
- ST MATH 390: Probability & Statistics in Engineering **5**

Revised 6/12/18

*** See policies on next page

Name: ____________________________ **Student ID#:** ____________________________ **Date:** ____________________________
The Computer Engineering program faculty at the University of Washington Bothell have developed, adopted, and maintained a well-defined set of educational objectives and desired student outcomes.

Educational Objectives The educational objective of the Computer Engineering degree is to prepare students:
- to become engineers who can assume leadership roles, technical or managerial, in computer engineering and related fields
- to become successful in pursuing advanced studies in computer engineering and related fields
- to become contributing citizens who are conscientious of ethical and societal responsibilities
- to become effective communicators in professional and non-professional environments and be able to function as a team member.

Student Outcomes The Computer Engineering program faculty have adopted the engineering criteria (a) through (k) Student Outcomes:
Outcome (a) An ability to apply knowledge of mathematics, science, and engineering.
Outcome (b) An ability to design and conduct experiments, as well as to analyze and interpret data.
Outcome (c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
Outcome (d) An ability to function on multi-disciplinary teams.
Outcome (e) An ability to identify, formulate, and solve engineering problems.
Outcome (f) An understanding of professional and ethical responsibility.
Outcome (g) An ability to communicate effectively.
Outcome (h) The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
Outcome (i) A recognition of the need for and an ability to engage in life-long learning.
Outcome (j) A knowledge of contemporary issues.
Outcome (k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Policies

- All major requirements and prerequisite courses must be completed with a minimum of a 2.0 GPA
- Capstone Design I & II must be taken consecutive quarters
- Complete Graduation Application 2-3 quarters prior to graduation

UW Policies

- UW Bothell Residence credit – 45 out of last 60 credits earned must be taken at UW Bothell
- Cross Campus Enrollment – after earning 15 credits at home campus, students are eligible to take up to 15 credit per year at another UW campus.
- Maximum of 15 credits in Electrical Engineering are allowed to be taken at UW-Seattle